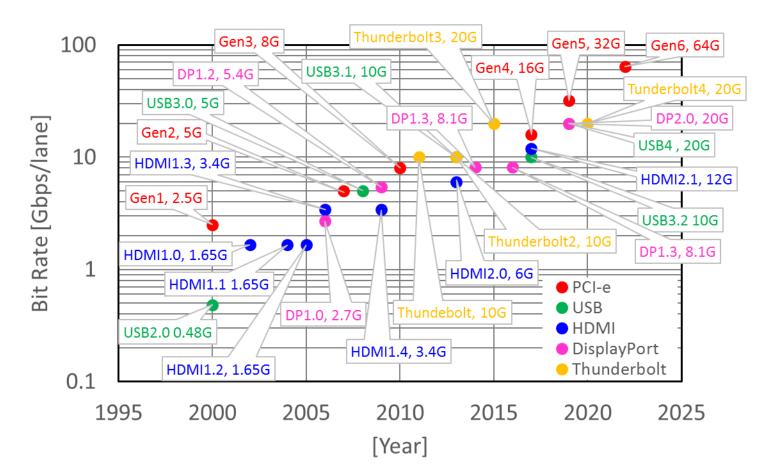


Cadence LIVE Japan 2022

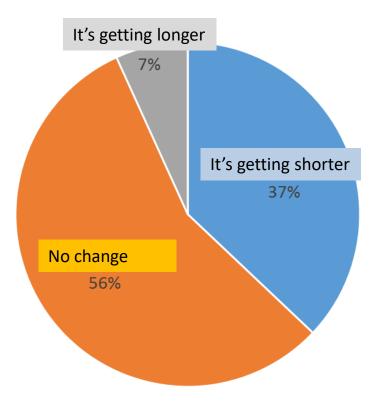
Providing Clarity 3D connector models for the electromagnetic field simulator

07/15/2022 Hiroaki Ikeda

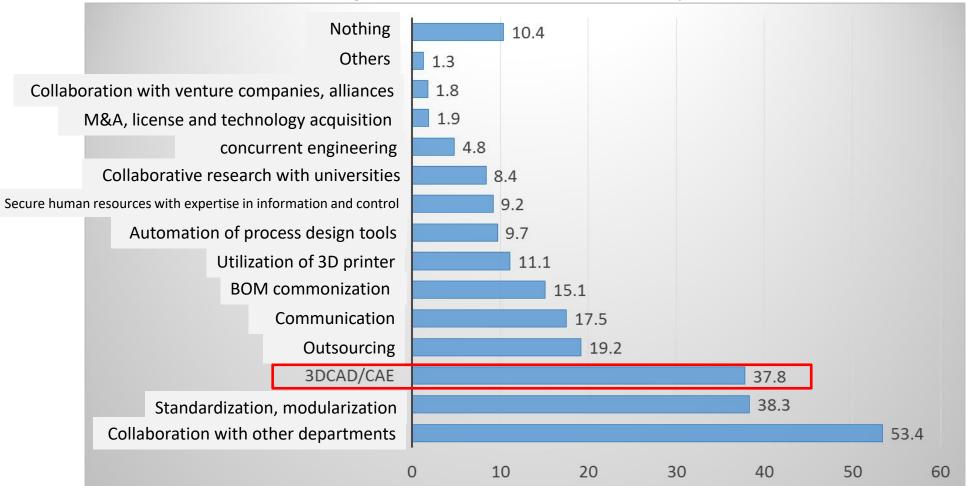

✓ Background of creating the encrypted 3D model

- ✓ Lineup of Clarity encrypted 3D models
- ✓ Accuracy benchmark
- ✓ Future Plans
- ✓ Summary

Transition of interface standards and bit rates

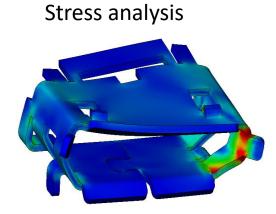

✓ The performance of electronic devices has improved, and the bit rate of digital signals has increased accordingly.

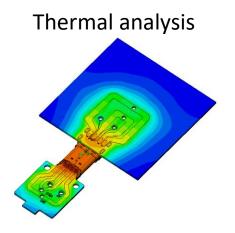
- ✓ From 2000 to 2010, The data rate is 17 times higher: 480Mbps --> 8Gbps
- ✓ From 2010 to 2020, The data rate is 8 times higher: 8Gbps --> 64Gbps

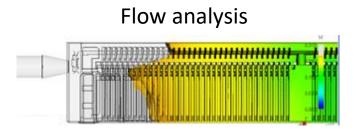

- \checkmark Electronic devices become obsolete quickly and the development period is short.
- \checkmark 37% of designers say the development period has been shortened.

Source: Mitsubishi UFJ Research and Consulting Corporation, "我が国ものづくり産業の課題と対応の方向性に関する調査", 2019

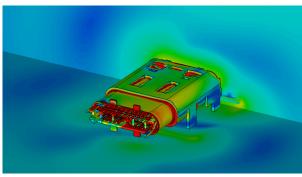
What is important for shortening the product development period

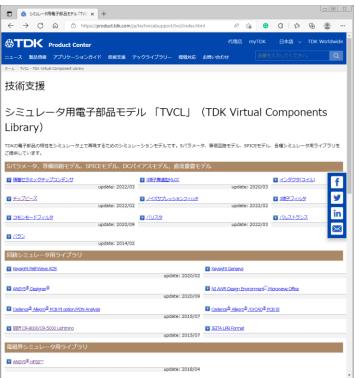



37.8% of designers consider 3DCAD/CAE important.


Source: Mitsubishi UFJ Research and Consulting Corporation, "我が国ものづくり産業の課題と対応の方向性に関する調査", 2019

Various numerical simulations





Electromagnetic field analysis

 ✓ For board design only, simulation models of passive elements such as capacitors, coils, resistors and filters as well as active elements such as LSI can be obtained from their manufacturers.

TDK Website

〇 ジミュレーク用電子部品モデル「TVC × meda	イブラリ 設計支援データ 相 × 十	
← C ⋒	ja-jp/tool/data/librarydata	A to 🗷 C to 🕲
電子部品	ラインアップ 🗸	品番検索 設計支援 SimSurfing
▲ HOME / 設計支援ツール / 設計支援データ / E	DAライブラリ	
トップ Sパラメータ SPICEモデル	EDAライブラリ CAEデータ CA	ADデータ
- EDAライブラリ		
 > Analog Devices LTspice[®] 動的モデル ・ 積層セラミックコンデンサ ・ パワーインダクタ 動的モデル ・ 積層セラミックコンデンサ ・ 積層セラミックコンデンサ ・ 南周波インダクタ 	 > ANSYS[®] Electronics Desktop Circuit シミュレ ータ ・ 紙層セラミックコンデンサ ・ 高同波インダクタ 	 > Cadence[®] AWR Design Environment (Microwave Office) ・ 戦闘セラミックコンデンサ ・
 > Cadence® OrCAD Capture/PSpice 動的モデル ・ 積重セラミックコンデンサ 	 > Cadence[®] Spectre 動的モデル ・ 根面セラミックコンデンサ ・ パワーインダクタ 	 > Fujitsu SignalAdviser®- SI ・ 積量セラミックコンデンサ ・ 3端子コンデンサ ・ 8分子コンデンサ
 パワーインダクタ 静的モデル 積層セラミックコンデンサ 	静的モデル • 積層セラミックコンデンサ • 高周波インダクタ	 ・ 高周波インダクタ ↑ ・ フェライトビーズ ・ コモンモードチョークコイル

Murata Website

https://product.tdk.com/ja/technicalsupport/tvcl/index.html

https://www.murata.com/ja-jp/tool/data/librarydata

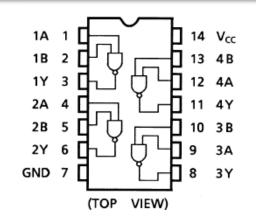
A model example of passive element (filter)

 ✓ Models of capacitors, coils and filters are provided with equivalent circuit or S-parameter format with their internal structure hidden.

SPICE (equivalent circuit) model

.SUBCKT BLE32PN260SN1 port1 port2 R1 port1 1 29.99 L1 port1 1 5.504e-8 C1 port1 2 5.248e-13 R2 1 2 18.82 L2 1 2 6.222e-9 R3 2 3 999.9 L3 2 3 9.924e-10 R4 3 port2 1.100e-3 .ENDS BLE32PN260SN1 S-parameter

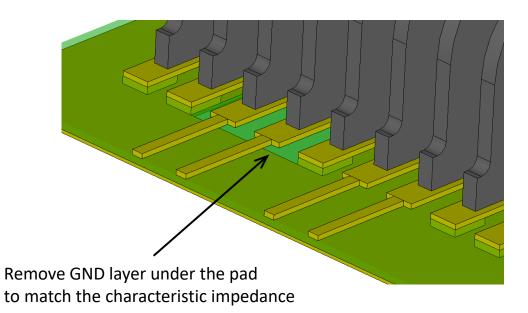
! BLM03AG100SN1 # Hz S RI R 50 !Freq.(Hz) S11(Real) S11(Imag) S21(Real) 1e+06 0.00045893 0.0037198 0.99954 1.0202e+06 0.00046541 0.0037947 0.99953 1.0408e+06 0.00047216 0.0038711 0.99953 1.0619e+06 0.00047918 0.0039491 0.99952 1.0834e+06 0.00047918 0.0040285 0.99951 1.1053e+06 0.00049408 0.0041096 0.99951 1.1276e+06 0.00050199 0.0041923 0.9995 1.1504e+06 0.00051023 0.0042766 0.99949 1.1737e+06 0.00051879 0.0043627 0.99948

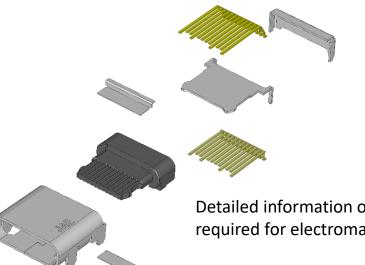


Encrypted model

.SUBCKT SN74HC00 1A 1B 1Y 2A 2B 2Y + CGND 3Y 3A 3B 4Y 4A 4B CVCC .prot FREELIB7K1:.=#Kq[=2/63f:bDhe7gd+%XA<SgW%/10'SJ+ q'XU.b[W<C%/\$9/U89>!8Y#/6K>2[xJQ7K1:.j#KqU=2/6;f:bD)e7gd+%XA<SgW%/10'SJ+q:XU.h[W<C//\$9/I89>!8Y#/6K>2 [xJQH*[/7Z w:=>[xJSq%8(L!z![k,'\$sj+:w[H\$4¥u:m4'\$s2 O9>P[s8o!= 2h#3w+Z 2[o¥;:k-a[7C Y38Z57C

C9[897GD+%xa<sGw!=zF8m'u79[877¥c)9[8S7GD+%xa<s Gw+m6J'[4vRxXz2j#vRxXAa#DW%¥>A\$M\$2ye2Zv9#/(/z


IBIS model


[Temperatu [Voltage Ra [Pulldown]	•••	25.0 5.0V	85.0 4.5V	-40.0 5.5V
voltage	l(typ)	I(min)	l(ma	x)
-5.0000 -4.6000 -4.2000 -3.8000 -3.4000 -3.0000 -2.6000 -2.2000	-1.2350E+0 -1.1180E+0 -1.0020E+0 -8.8490E-0 -7.6760E-0 -6.5010E-0 -5.3240E-0 -4.1470E-0	00 -1. 00 -9. 11 -8.7 11 -7.6 11 -6.4 11 -5.3	2270E+00 1110E+00 9550E-01 7930E-01 6320E-01 4700E-01 8100E-01 1530E-01	-1.2460E+00 -1.1290E+00 -1.0110E+00 -8.9320E-01 -7.7470E-01 -6.5570E-01 -5.3620E-01 -4.1640E-01

Connector simulation model (present)

- ✓ Regarding the connector model, it is provided by the equivalent circuit or S-parameter, but the characteristics will be slightly different depending on the design of the board side.
- ✓ For connector manufacturers, 3D CAD data for connectors are their design asset and cannot be easily disclosed. (Using the CAD data, we can even design molds.)

Detailed information on connectors is required for electromagnetic field simulation

Source: Nozaki, Hatakeyama, Ikeda, Nagao, Nagano, & Miyazaki. (2019) USB Type-Cのすべて, CQ Publishing Co.,Ltd,

Cadence and JAE collaborate to develop the encrypted models capable of electromagnetic field simulation while hiding the internal structure of the connector.

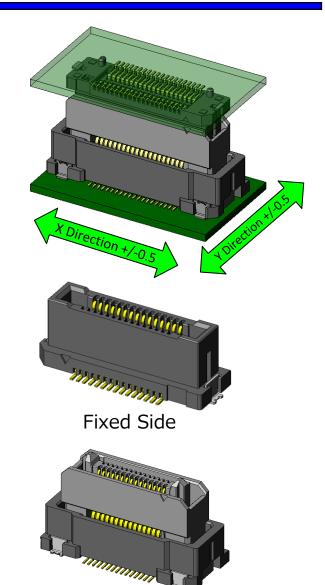
Advantages

- Signal Integrity Simulation (The connector is mounted on the PCB)
- Visualization of connector appearance (The internal structure is invisible)
- No need to set connector physical constants (Preset inside the encrypted model)

Disadvantages

 The simulation time becomes to be long (The objects of the connector cannot be edited)

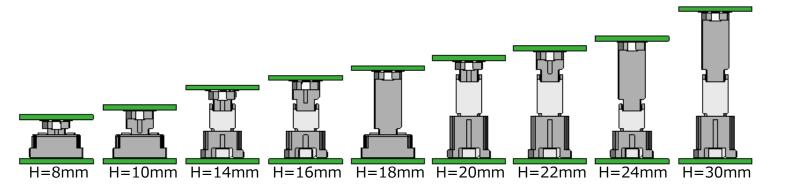
Clarity encrypted model lineup – AX01 Series

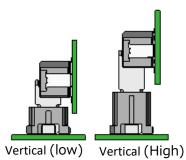

Features

- 1. Floating tolerance: +/-0.5 mm in both X & Y directions
- 2. Two-point contact structure ensures high contact reliability
- 3. Low insertion and removal forces achieved by roll surface contact structure
- 4. 8 Gbps+ high-speed transmission (10GBASE-KR and PCIe Gen3)

General Specifications

Number of Contacts	30 to 140 positions
Contact Pitch	0.635mm pitch
Stacking Height	8.0mm to 30.0mm
Floating Movable Amount	X direction: +/-0.5mm, Y direction: +/-0.5 mm
Operating Temperature Range	-40 deg. C to +105 deg. C (including conduction temperature rise)
Rated Current	0.5A/PIN
Rated Voltage	AC50Vr.m.s
Contact Resistance	50mohm max
Dielectric Withstanding Voltage	AC 250 Vr.m.s., conduction for 1 minute
Insulation Resistance	100 megohm min. (DC100V)
Durability	100 mating cycles


https://www.jae.com/connectors/series/detail/id=89284



Floating side

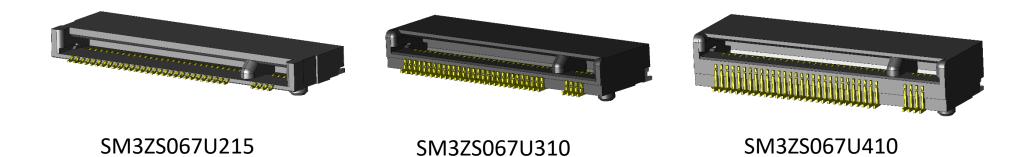
Clarity encrypted model lineup – AX01 Series

Stacking Height [mm]	Stacking Direction	File Name
8	Horizontal	AX01F030VAAB_AX01R030VABB_H8mm.3dcomp
10		AX01F030VAAB_AX01R030VADB_H10mm.3dcomp
14		AX01F030VABB_AX01R030VABB_H14mm.3dcomp
16		AX01F030VABB_AX01R030VADB_H16mm.3dcomp
18		AX01F030VAAB_AX01R030VANB_H18mm.3dcomp
20		AX01F030VACB_AX01R030VABB_H20mm.3dcomp
22		AX01F030VACB_AX01R030VADB_H22mm.3dcomp
24		AX01F030VABB_AX01R030VANB_H24mm.3dcomp
30		AX01F030VACB_AX01R030VANB_H30mm.3dcomp
15	Vertical	AX01F030VABB_AX01R030HAYB_V15mm.3dcomp
20		AX01F030VACB_AX01R030HAYB_V_H21mm.3dcomp

Clarity encrypted model lineup – SM3 Series

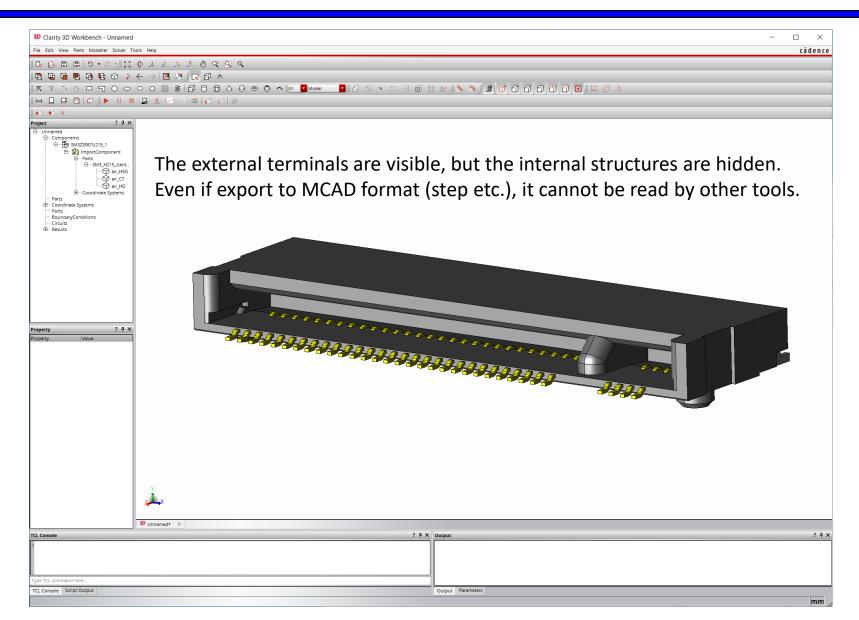
Features

- 1. Compatible with PCI-SIG PCI Express M.2 Specification, and transmission of high-speed signals such as PCIe, Gen 3, USB 3.0, Displayport, SATA, and more are possible
- 2. Secures a maximum clearance of 1.2 mm between M.2 module and the board
- 3. Compatible with 4 types of mating keys
- 4. 0.5mm pitch (1 row back and front), 69 position, compact card edge connector


General specifications

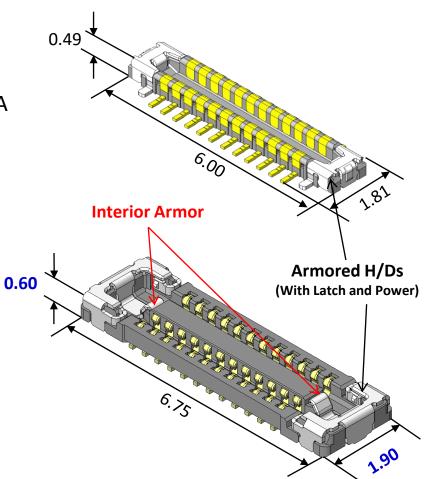
Number of Contacts	69 positions
Contact Pitch	0.5mm
Operating Temperature Range	-40 Deg. C to + 80 Deg. C
Rated Current	0.5A/PIN
Rated Voltage	AC50Vr.m.s
Contact Resistance	55m ohms max.
Dielectric Withstanding Voltage	AC300Vr.m.s (minute)
Durability	60 times

https://www.jae.com/topics/detail/id=1673


Clarity encrypted model lineup – SM3 Series

Clearance [mm]	File Name	
0.3	SM3ZS067U215.3dcomp	
0.2	SM3ZS067U310.3dcomp	
1.2	SM3ZS067U410.3dcomp	

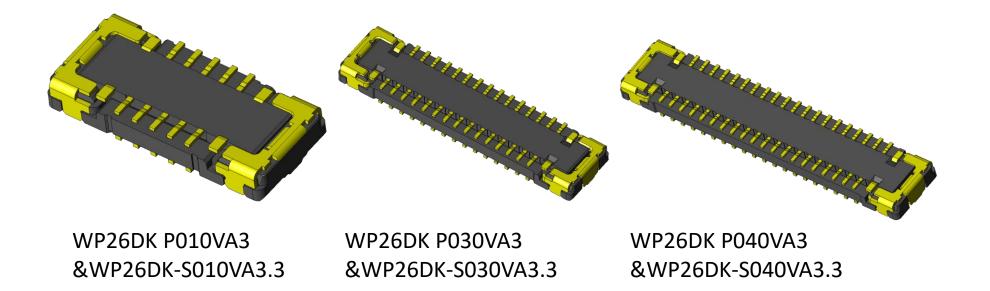
Import/View the encrypted connector model

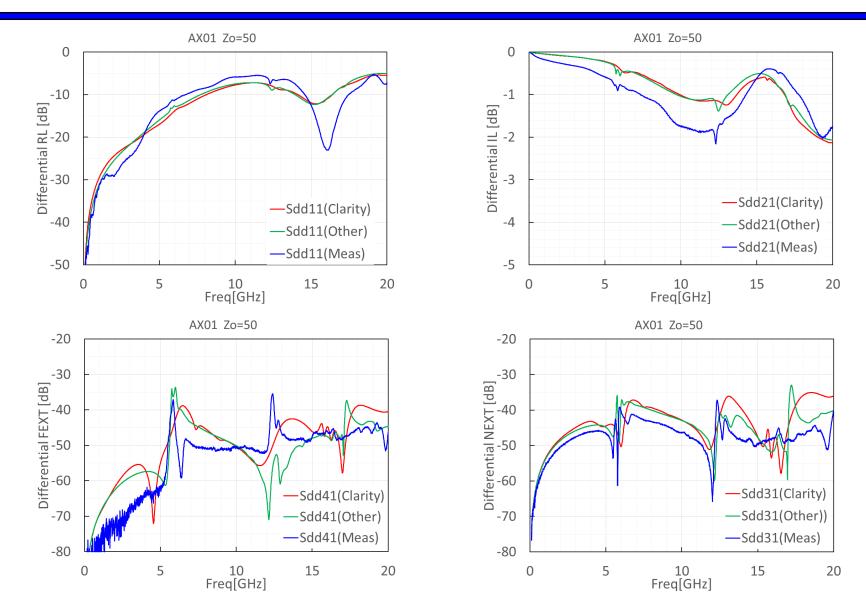

Clarity encrypted model lineup – WP26DK Series

Features

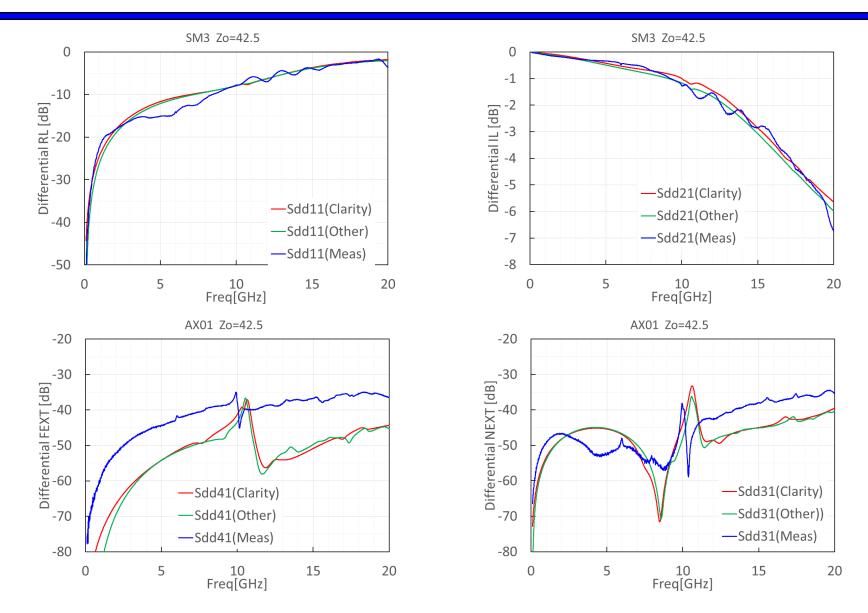
- 1. Supports MIPI, USB3.1 Gen2, and PCIe Gen3 transmission
- small board-to board connector with 0.35mm pitch and 0.6mm stacking height
- 3. Two hold-downs for power supply, supporting transmission of 3.0A
- 4. Nickel barrier on contact prevents solder wicking

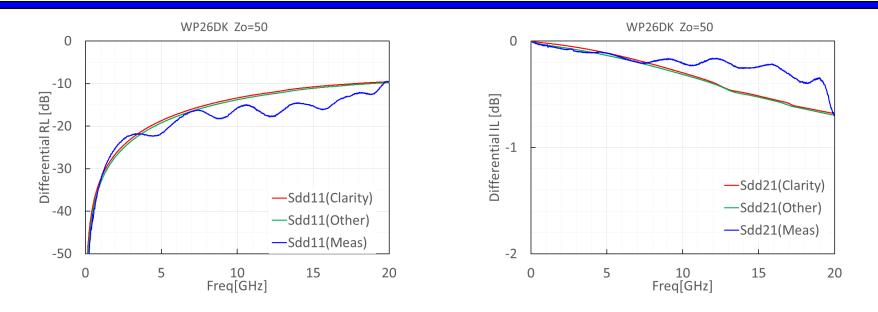
General Specifications


Number of Contacts	10 to 60 positions	
Contact Pitch	0.35mm pitch, 2 rows	
Rated Current	Signal Terminal: 0.3A/PIN Power Supply Terminal: 3A/PIN	0.0
Stacking Height	0.6mm	
Operating Temperature Range	-40 Deg. C to + 85 Deg. C	
Rated Voltage	AC,DC 50Vr.m.s	
Contact Resistance	Signal Terminal: 70mohm max Power Supply Terminal: 20mohm max	
Dielectric Withstanding Voltage	AC 250 Vr.m.s. 1 minute	
Insulation Resistance	100 megohm min.	
Durability	30 mating cycles	
https://ww	/w.jae.com/connectors/series/detail/id=	- -94895


Clarity encrypted model lineup – WP26DK Series

Number of Contacts	File Name
10	WP26DK_P010VA3_WP26DK-S010VA3.3dcomp
30	WP26DK-P030VA3_WP26DK-S030VA3.3dcomp
40	WP26DK-P040VA3_WP26DK-S040VA3.3dcomp

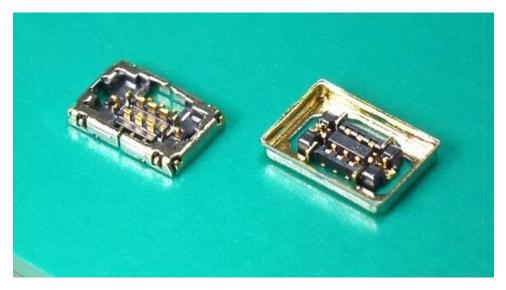

Accuracy Benchmark – AX01


Accuracy Benchmark – SM3

Accuracy Benchmark – WP26DK

Download clarity encrypted 3D models

The following QR Code to download models for use in Clarity3D Workbench


Japanese

Future plans

WP16RS

Features

- 1. High shield performance due to the full shield structure
- 2. New high frequency dedicated for RF terminal developed terminal
- 3. Supports signal terminal 1A/ contact
- 4. Robustness and alignment

WP56DK

Features

- 1. Supports MIPI, USB3.1 Gen2, and PCIe Gen3 transmission
- 2. 0.3mm pitch, 0.6mm mated height
- 3. Power supply terminals supporting 3.0A
- 4. Nickel barrier on contact prevents solder wicking

- ✓ The signal transmission rate of digital devices is increasing year by year, while the product development period is shortening.
- ✓ Numerical simulation is widely used as one of the design tools, but it is necessary to obtain simulation models for each electronic component.
- ✓ Passive component manufacturers provide their models in various formats, but for connector manufacturers, S-parameter and equivalent circuit formats are common.
- ✓ When the signal transmission rate 10 Gbps over, it might be performed the simulation with the connector mounted on the board due to the interaction between the connector and the board.
- ✓ If we want to simulate a self-poisoning problem, we need 3D CAD data of the connector, but it is not possible to provide because of a design asset.
- ✓ In collaboration with Cadence, we are now able to provide 3D CAD data for encrypted connector models, allowing us to simulate signal integrity and self-addiction issues.

