
WHITE PAPER

Accelerate Adoption of High-Speed,
Low-Latency, Cache-Coherent
Standards Using Formal Verification
By Hamish Hendry, Sakthivel Ramaiah, Derek McAulay, Gary Dick, Cadence

We continue to see huge growth in data and compute demand, fueled by increased global data

traffic with the 5G rollout , the prevalence of streaming services, and expanded artificial

intelligence and machine learning (AI/ML) applications. Several new industry-standard

specifications have emerged in recent years to define the protocols of the underlying electronic

components and IP building blocks. The Compute Express Link (CXL) 2.0 specification by the CXL

Consortium is one such standard defining high-speed, low-latency, cache-coherent interconnects

based on the PCI Express® (PCIe®) 5.0 protocol. In this white paper, we will examine how formal

verification techniques have been successfully deployed to verify the implementation of

Cadence® design IP for these emerging standards.

Contents

Introduction ...2

Definition of “Formal”..2

Why Not Just Use UVM? ..3

Evolving Adoption of Formal for PCIe3

CXL Controller ...5

Training Sequence Decoder6

Frame Decoder ...6

ECC Gen 6 ... 8

CXL Arb/Mux .. 8

Verification Strategy ...9

Formal Benefits ..10

Summary ...11

Further Resources..11

Accelerate Adoption of High-Speed, Low-Latency, Cache-Coherent Standards Using Formal Verification

2www.cadence.com

Introduction
The cloud computing revolution and proliferation of mobile devices is increasing data traffic and driving changes in data
center device architecture. Data-centric applications require high-speed, low-latency communication within and between
servers, storage, and accelerators with increasing portions of the memory hierarchy being brought into the coherency
domain. The CXL specification is based on PCIe 5.0 and is an open industry-standard interconnect offering high-bandwidth
and low latency.

The complexity of these standards, and the effort to architect, design, and verify these IP building blocks for the SoCs of
tomorrow, requires innovative techniques to help break down the design and verification challenge into smaller sub-tasks that
ultimately contribute to the overall success of the product.

The Cadence IP Group has been deploying assertion-based verification (ABV) techniques for several years to target key
building blocks of the PCIe controller product line. Formal verification techniques have been widely used in developing the
M-PCIe™, cache coherent interconnect for accelerators (CCIX), PCIe 4.0, PCIe 5.0, PCIe 6.0, and CXL 1.1/2.0 controllers.

For complex IP such as PCIe and CXL, it is a question of using all the tools at our disposal to develop the IP: assertion-based
formal verification, coverage-driven verification with Cadence® Verification IP (VIP)-based Universal Verification Methodology
(UVM) environments, accelerated VIP, Cadence SpeedBridge® Adapter-based verification on the Cadence Palladium®
Enterprise Emulation Platform, and FPGA-based prototyping and test chips.

In this white paper, we provide insight into how ABV and the Cadence JasperGold® Formal Verification Platform and Apps
prove complex modules of the latest Cadence Controller IP for PCIe/CXL, describing how formal verification can accelerate
sub-module verification for evolving standard-based design IP.

We also will demonstrate how formal verification metrics can be used alongside traditional coverage-based verification
metrics from a UVM-based testbench environment.

Definition of “Formal”
First, a point on terminology regarding “formal” is worthwhile. It is important to distinguish between ABV, the subject of this
white paper, and logic equivalence checking (LEC) that engineers within the electronics community may also refer to as
“formal”.

A LEC flow compares, for example, a synthesis netlist to the original RTL code. In this case, we are using a tool such as
Cadence’s Conformal® Smart Logic Equivalence Checker, to formally prove that two design input sources are logically equiv-
alent, e.g., a netlist and the RTL. This flow is particularly useful for engineering change order (ECO) updates to design blocks.

Formal verification using assertions however, is different. In this flow, assertions describe the intended operation of the block
under test. The assertions, such as SystemVerilog Assertions (SVA), can be written to describe the expected input to the block
(assumptions and constraints) and the expected operation and outputs of the block (checks). In this case, we are using the
JasperGold platform to exhaustively analyze the design and check that it always adheres to the rules outlined in the SVA. Note
that the JasperGold platform also has the capability to compare two designs using the Sequential Equivalence (SEQ) App.

Plug and Play Flow

Design RTL
Customize / Extend

Protocol Flow

Assertion-
based VIP

RTL Simulator

Formal Property
Verification

JasperGold with
Visualize

Technology

JasperGold with
Visualize

Technology

Certification of AMBA
3/4/5 checkers

Popular standard
protocols

Configurable,
illustrative, optimized
for formal

Assertion-Based VIP

Formal Property
Verification

Formal Property
Verification App

Block-level or
end-to-end properties

Sequential Equivalence
Checking App

Sequential, temporal, and
functional equivalence

Reference versus
modified RTL

Side-by-side debug

Full-chip capacity

Interactive debug, what-
if and constraint setting

High performance
and capacity

Figure 1: Cadence ABV IP plugs seamlessly into simulation and formal environments to find critical bugs early in the verification process

https://en.wikichip.org/wiki/ccix

Accelerate Adoption of High-Speed, Low-Latency, Cache-Coherent Standards Using Formal Verification

3www.cadence.com

Why Not Just Use UVM?
This white paper provided a simple answer in the introduction. We are looking to divide and conquer by breaking up a very
complex protocol and complex development challenge into smaller sub-blocks to verify at module level.

The Cadence Controller for PCIe and CXL verification environments makes extensive use of the official Cadence VIP for PCIe
and CXL, developed by an independent Cadence group to the Cadence Design IP. These VIP-based environments test the full
protocol layers of the PCIe and CXL spec, modeling the transaction layer, data link layer, logical physical layer, and PHY layers.
The UVM-SV VIP-based environments are critical to the development of the IP.

ABV environments are complementary to the UVM environments and, in some cases, are used to formally sign off blocks.

If we take the CXL controller example, we are implementing a design based on PCIe 5.0, a specification that is over 2000
pages. The CXL 2.0 specification itself is over 600 pages.

Evolving Adoption of Formal for PCIe
The adoption of SVA and property specification language (PSL) assertions in the Cadence controller for PCIe can be traced
back to the PCIe 1.0 controller developed in the early 2000s.

PCIe 1.0 Controller

Originally, keen designers developed such assertions directly in the RTL code to quickly flag unexpected or undesired
behavior in their own RTL, at source. A good example of such an assertion would be the detection of a buffer overflow in the
middle of the PCIe transaction layer:

*E: “TL Buffer Overflow – Inbound Posted Queue”

The designers writing the assertions in the PCIe 1.0 controller wanted an immediate error indication for the issue in their
block, rather than potentially waiting many cycles for an end-to-end scoreboard to flag a generic “data mismatch” error.

ABV use evolved at Cadence since the sporadic use of design assertions in the early 2000s. It moved to a more structured
approach for subsequent PCIe projects, with ABV forming part of the vPlan within the vManager™ Metric-Driven Signoff
Platform and contributing to coverage metrics.

M-PCIe Controller

In 2012, Cadence verified the standalone Link Training and Status State Machine (LTSSM) of the Cadence M-PCIe controller
using formal verification with assertions mapped to a vPlan alongside regular functional coverage (Covergroups), developed
using SystemVerilog. The focused effort at the module level identified issues in a shorter space of time than initial end-to-end
top-level simulation environments would have.

Cadence presented a paper at the 2013 PCI-SIG Developers Conference entitled “M-PCIe Implementation Case Study.” This
paper contained a section outlining the use of formal verification techniques to verify the new M-PCIe LTSSM block, with the
key challenge being the early availability of a new LTSSM design block, ahead of full VIP availability.

There was a desire to test the new complex State Machine at module level, while Cadence developed the official VIP and
top-level simulation testbench for M-PCIe.

The paper also outlined the formal verification work performed by the controller team:

	f Early pipe cleaning of new LTSSM RTL code possible with formal verification

	f ~300 assertions developed at block level (some using common properties)

	f Shorter time to first passing test once VIP integrated into top-level simulation testbench

	f Assertions and constraints used for formal verification are reused in dynamic simulation

CCIX Controller

In 2016, Cadence developed the CCIX controller following the CCIX 1.0 Consortium Specification. For this development,
designers extensively used formal verification to verify and sign off the new CCIX transaction layer in parallel to the standard
module-level simulation techniques.

Accelerate Adoption of High-Speed, Low-Latency, Cache-Coherent Standards Using Formal Verification

4www.cadence.com

The CCIX formal work focused on the new CCIX transaction layer and host interface, highlighted by the red box in Figure 2
CCIX Controller Block Diagram.

The CCIX formal project found that classic formal verification was the most efficient mode for finding bugs, as demonstrated
by Figure 3 CCIX Controller Coverage (2017). However, The JasperGold deep bug hunting modes were also used to efficiently
reach deep areas of state space. Coverage was then used to get to planned scenarios that were required for signoff, with the
team making extensive use of state-swarm to improve coverage and guidepointing to get to 100% coverage. Designers used
soak to search for deep, unplanned scenarios, running formal with no time limit (run until manually stopped), but with cover-
constraints to avoid unproductive search paths.

Figure 3, presented by Anish Mathew from Cadence at the Jasper User Group 2017 conference, demonstrated the progress
made towards coverage closure using classic, state swarm, and guidepointing techniques.

Local
Management Bus

Interrupt
Interface

AXI4 Interface

PCle Transaction
Layer

Configuration
Registers

PIPE Interface

CCIX Transaction
Layer

Link
Layer

Physical
Layer

CCIX Interface

PCle
Interface

CCIX
Interface

Replay Buffer RAM

Link State

LTSSM

CRC CRC Gen

Figure 2: CCIX controller block diagram

Figure 3: CCIX controller coverage (2017)

Accelerate Adoption of High-Speed, Low-Latency, Cache-Coherent Standards Using Formal Verification

5www.cadence.com

Key metrics from CCIX transaction layer:

	f Registers: 9331

	f Gates: 56K

	f RTL Lines: 25K

Key points from the CCIX Controller formal signoff work:

	f Formal does a better job on short scenarios, simulation a better job on long scenarios

	f Formal’s ability to hit more corner cases has side effects—some aspects of the design end up being more robust than
necessary, but sometimes unrealistic scenarios are hit and it is hard to constrain them away

	f Difficult to write end-to-end checks in formal, especially when considering error/abort scenarios

	f The effort to close coverage is comparable between formal and simulation for CCIX transaction layer

The successful use of formal verification through PCIe 1.0, M-PCIe, PCIe 3.0, PCIe 4.0, and CCIX brings us to the most recent
example in this white paper, the CXL controller.

CXL Controller
The Cadence controller for CXL 2.0 serves as an extension to the Cadence controller for PCIe 5.0 High-Performance
Architecture (HPA). Designers adopted the proven divide-and-conquer approach in the development of this controller, with key
blocks being identified during the architecture phase as being suitable for formal verification.

Formal verification using the JasperGold platform has been targeted to the following blocks within the PCIe 5.0/CXL and 6.0
controllers

	f Training sequence decoder

	f Frame decoder

	f Error correcting code (ECC)

AXI or HLS
(HAL Streaming)

PCle Transaction
Layer

Initiator

La
n

e
0

P
C

le
 C

X
L.

io

C
X

L.
$

m
em

P
C

le
 C

on
fig

u
ra

ti
on

s
R

eg
is

te
rs

La
n

e
16

Responder Outbound

Message
Handling

Message
Ordering

CXL Transaction
Layer

CXL Data Link
Layer

Flit Unpack
& CRC

Flit Unpack
& Retry

RetryCRC

Multiplex CXL.io, CXL.mem, CXL.cache

LTSSM

..............

PCle Data Link
Layer

ARB/Mux
(CXL only)

Logical
Physical Layer

CXL Streaming
Interface (CLS)

AXI or HLS
Interface

CXL DVSEC
Component Registers

APB or
AXI Lite

Inbound
CLS

Outbound
CLS

Inbound

TLP
Generation

TLP
Receive

PPE Interface to PHY

Figure 4: CXL 2.0 High-Performance Architecture Controller

Accelerate Adoption of High-Speed, Low-Latency, Cache-Coherent Standards Using Formal Verification

6www.cadence.com

	f Frame encoder

	f Lane-to-lane Deskew

	f CXL ARB/MUX

Each of these blocks has traditionally proven challenging to verify with simulation in earlier PCIe generations (with the
exception of ECC and ARB/MUX which are new). The blocks all have their own standalone formal environment and follow a full
metric-driven verification approach. Each block has its own verification plan that went through the same standard planning
and review process as followed for vPlans used by simulation. Determining formal verification completeness follows the same
standard approach as simulation in that block, toggle and expression code coverage must be closed and all plan items must
be covered and passing. The formal environments are fully parameterized, making them scalable for use with all IP configura-
tions. The following sections provide further detail on four of these formal environments.

Training Sequence Decoder

Primary Function

The training sequence decoder block is responsible for processing received training sequences (TS) and extracting infor-
mation embedded within the TS1s and TS2s. It must also determine if TSs are consecutive, matching previous received TSs
and error free.

Verification Challenge

The biggest challenge is ensuring the block is robust to noise that can occur on the PCIe link. Predicting the expected
behavior under random noise conditions is difficult for high-level simulation. Measuring injected noise and determining when
enough testing has been performed is also a significant simulation challenge.

Benefits and Efficiency of Formal

The formal environment uses relaxed constraints that allow the JasperGold platform the freedom to apply a “noisy input” to
model bit error rate (BER) and corrupt the received TSs. The environment contains an abstracted model of the design under
test (DUT), which is used by the 210 assertions to predict the expected DUT output behavior. The environment quickly
confirmed that only good TSs were positively reacted to by the design and any corrupted TSs either tagged as errors or
ignored. Using formal rather than simulation to model a noisy input proved to be a very efficient and thorough approach.

Formal regression can be run and completed within 24 hours. Obtaining a high level of confidence from simulation in design
robustness to noise has previously taken many long regressions and time-consuming debug.

Frame Decoder

Primary Function

The frame decoder extracts transaction layer packets (TLPs) and data link layer packets (DLLPs) and passes these packets to
the data link layer. The block must detect the start and end of packets in the received data stream and catch any framing-re-
lated errors.

Verification Challenge

The big verification challenge is to thoroughly verify the huge number of possibilities in received data patterns when consid-
ering variables such as packet type ordering, packet start and end positions, TLP lengths, packet formats that vary between
PCIe speeds, and active lane widths..

The following is a very approximate calculation to illustrate the high number of important scenarios needing verification:

	f Packet type ordering (what came before and after a particular packet) - TLP before, DLLP before, IDLE before, TLP after,
DLLP after, IDLE after: 6 variations

	f Packet type being checked - DLLP, TLP: 2 variations

	f Active lanes - 1, 2, 4, 8, 16: 5 variations

Accelerate Adoption of High-Speed, Low-Latency, Cache-Coherent Standards Using Formal Verification

7www.cadence.com

	f Byte alignment possibilities for a 32-bit lane width: 4 variations

	f PCIe speed – 1.0, 2.0 or 3.0, 4.0, 5.0 determines framing format: 2 variations

	f TLP length - 5 DWORDS to 1032 DWORDS, important to consider different sizes, just for illustration consider min, max, big,
small, medium sizes: 5 variations

	f TLP finished with END or EDB (bad) token: 2 variations

	f Packet start position in x16 link: 16 variations

	f Packet end position in x16 link: 16 variations

Scenarios to cover = 6x2x5x4x2x5x2x16x16 = 1.2M

Benefits and Efficiency of Formal

The exhaustive nature of formal verification was very effective at dealing with the high number of input scenarios. Designers
identified many corner case bugs that could have taken millions of constrained random simulations before a lucky seed hit the
same issues. Around one-third of the bugs related to framing errors were not correctly flagged or, inversely, errors were wrongly
detected when there were none. The environment contains 204 assertions that take around two days to fully regress.

Combining Formal Metrics with Simulation

Using formal verification to verify the frame decoder was not without challenges that primarily related to end-to-end
checking of long TLPs. This challenge was mostly overcome by some careful over-constraining that simplified the complexity
for the JasperGold platform while still allowing the bugs to be exposed. The over-constraints did lead to a small number of
code coverage gaps that were already known to be covered in top-level simulation. To maximize efficiency and avoid dupli-
cation of verification effort, code coverage results from formal (the JasperGold platform) and simulation (Cadence Xcelium™
Logic Simulation) merged into a single combined database using the vManager platform. The screenshot below from the
vManager code coverage viewer shows three columns from an example submodule within the frame decoder.

Combined Average Grade = logical OR of formal and simulation coverage
Overall Average Grade= simulation-only coverage
Formal Average Garde= formal-only coverage

The capability to see combined results in vManager Verification Management is a powerful feature of the Cadence tool flow
and ensures an efficient and thorough verification solution. It enables verification signoff using the combined strengths of
different verification techniques.

Figure 5: vManager code coverage viewer showing combined, simulation, and
formal code coverage within the frame decoder

Accelerate Adoption of High-Speed, Low-Latency, Cache-Coherent Standards Using Formal Verification

8www.cadence.com

ECC for PCIe 6.0

Primary Function

The error correction code (ECC) block contained an encoder for the transmit direction and decoder for the receive path. It
corrects up to three byte burst errors per 256-byte frame.

Verification Challenge

The challenge is to fully verify all correctable burst error byte patterns within a frame, including the multiple ways of
corrupting individual bytes.

Benefits and Efficiency of Formal

The formal verification work was done in two steps:

Step 1 - The JasperGold sequential equivalence checking (SEC) app compared the Cadence encoder with the example
encoder code provided in the PCIe 6.0 specification. The setup connected the inputs of both blocks together and then used a
single assertion to check that the outputs of both blocks always match. This gave rapid confidence that our functionality
aligned with the golden spec example.

Step 2 - Connect the encoder with the decoder. The JasperGold platform injected byte errors (controlled via constraints) on
the output data from the encoder before the errored data was input to the decoder.

Simple assertions check that data out of the decoder is corrected by comparing it with the input data to the encoder. The
environment was fast to build, taking around a day to create the initial version and to find the first bugs. The bugs were corner
cases that could have taken a huge number of simulation cycles to catch and demonstrated the efficiency of this formal
setup. Note that both setups required some over-constraining of the 256-byte frame data to achieve full assertion passes.
Unconstrained versions of the frame data were also run for days on long bug hunting regressions and, as expected, returned
explored rather than full passes. These explored results are still valuable and give further confidence in the design.

CXL Arb/Mux

Primary Function

The CXL Arb/Mux exists between the physical and link layers of the Cadence High-Performance Controller for CXL 2.0 and
provides dynamic multiplexing of data and control information destined for the CXL.io and CXL.cache/CXL.mem link layers.
The transmitting Arb/Mux includes an arbiter that grants requests from the different CXL link layers in addition to creating
544-bit flits that include the 512-bit data plus a 16-bit protocol identifier and a 16-bit CRC. These 544-bit flits are subse-
quently passed to the physical layer in 512-bit data beats. In the receive direction, inbound CXL flits are unpacked—the
protocol identifier and CRC are stripped—and the associated protocol identifier determines to which CXL link layer the data is
forwarded. Each CXL link layer has a virtual link state machine (vLSM) that manages power state transition requests. Its main
functions are:

data in

assert_data_corrected: assert property
(corrected_data == data_in) ;

corrected data
ECC

Encoder
encoded data encoded data

with errors

error injection controlled
via constraints

ECC
Decoder

Figure 6: ECC formal setup that checks burst errors corrected

Accelerate Adoption of High-Speed, Low-Latency, Cache-Coherent Standards Using Formal Verification

9www.cadence.com

	f Resolving each vLSM state to a single physical layer request

	f Generating and receiving Arb/Mux link management Packets (ALMPs) to synchronize power-state transitions across the
link between each of the link layers

Each vLSM is responsible for its power state. Local link layer requests or requests from the remote vLSM indicate transitioning
states based on these requests.

While the CXL v2.0 specification describes the Arb/Mux vLSM as a hardware-finite state machine, in reality, it is more compli-
cated: The digital architecture of the vLSM is almost like a software-state machine that is capable of generating and
processing ALMP while responding to power state requests from its link layer. As a result, the vLSM architecture must be able
to correctly handle the order of priority and race conditions which occur due to the asynchronous nature of ALMP and CXL
link layer inputs. Formal was excellent at highlighting all these situations.

Verification Challenge

Significant changes to the Arb/Mux chapter took place between version 1.1 and 2.0 of the CXL specification, with a number of
areas of the ArbMux chapter open to interpretation as the specification evolved. Multiple technical sessions were therefore
required between the Cadence Arb/Mux design team and the Cadence Arb/Mux formal verification team in parallel to the
team attending working group sessions at the CXL Consortium.

Verification Strategy
Two strategies were followed in the Arb/Mux vLSM module formal verification. These strategies enabled technical discussions
on a number of grey areas in the specifications.

Strategy 1

For each feature, both positive and negative aspects are analyzed. For example, the CXL specification states:

“When an Active Request ALMP has been sent, receipt of any ALMP other than an Active Status ALMP or an Active Request
ALMP is considered an unexpected ALMP and will trigger recovery.”

The all-round analysis has forced us to ask the following questions and to develop additional checks for this feature:

	f What happens if active status ALMP is sent without any request?

	f What happens if active status ALMP is received without any request?

In general, let us consider a signal “x” and a packet “y”:

	f “x” should be asserted or “y” should be sent for “p” number of reasons

	f “x” should not be asserted or “y” should not be sent for “n” number of reasons

Where “p” refers to positive checks and transforms to “p” number of assertions, and
where “n” refers to negative checks and transforms to “n” number of assertions.
The formal environment auxiliary (AUX) code is written to identify “p” reasons and used to disable “n” assertions.

Strategy 2

In general, for cause-effect feature checks, inputs trigger an assertion to check an expected output. There is, however, a
disadvantage in having only this check. For example, what happens if there is an effect without any cause? In order to ensure
there are no unexpected changes in outputs or state transitions, each “cause and effect” type check has an accompanying
“when there’s an effect, check there was a valid cause”. For example, “when active request ALMP is received in low-power
state, DUT goes to retrain state”.

There are two kind of checks applied for this condition in order to make the verification foolproof:

	f Assertion 1 (cause-effect check)

 ɢ Pre-condition: DUT receiving Active Request ALMP in low-power state

 ɢ Check: DUT should reach retrain state

Accelerate Adoption of High-Speed, Low-Latency, Cache-Coherent Standards Using Formal Verification

10www.cadence.com

	f Assertion 2 (effect without cause check)

 ɢ Pre-condition: DUT transitioning to retrain state from low-power state

 ɢ Check: DUT should have received an Active Request ALMP

Note: AUX code support would be required for “Assertion 2”

Once such checks were implemented, the formal team found bugs from “negative” and “effect without cause” checks. These
techniques paved the way to highlight the grey areas in the standard specification as well as in the design implementation
specification.

Formal Benefits
The controller team analyzed in detail the following example grey areas as a result of the formal environment—What happens
if the DUT encounters any of these circumstances?

	f Receives valid ALMPs in the wrong state

	f Receives valid ALMP but not applicable to a particular mode

	f Receives back to back request ALMPs or status ALMPs—redundant

	f Receives multiple requests at the same time across different interfaces

	f Receives ALMP with reserved values in valid field or non-zero values in reserved fields

These questions and checks paved the way to have deterministic and consistent behavior of the RTL-DUT for noisy inputs
and hence making the product robust.

Deploying an independent formal verification engineer to formally verify the Arb/Mux block of the CXL Controller identified
several areas of the CXL specification that required clarification. At Cadence, these Arb/Mux discussions took place within a
small group of engineers, namely the block designer, the formal engineer, the technical lead, and the CXL IP architect. The
controllability and quick turnaround time at the Arb/Mux formal level allowed for rapid development and improvement of the
Arb/Mux IP block, while the complex UVM top-level testbench was developed in parallel. Figure 7 summarizes some key
statistics from this exercise.

3000 lines of
code

Statistics from
DUT-vLSM

Assertions Finish in
under 2 hours

Finish > 2 hours Undetermined

4500 gates 240 assertions

95% 5% 5%

5 hours run
time for formal

Figure 7: Highlights of formal verification of the CXL ArbMux

Accelerate Adoption of High-Speed, Low-Latency, Cache-Coherent Standards Using Formal Verification

Cadence is a pivotal leader in electronic design and computational expertise, using its Intelligent
System Design strategy to turn design concepts into reality. Cadence customers are the world’s
most creative and innovative companies, delivering extraordinary electronic products from chips
to boards to systems for the most dynamic market applications. www.cadence.com

© 2021 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and the other Cadence marks
found at www.cadence.com/go/trademarks are trademarks or registered trademarks of Cadence Design Systems, Inc. PCI
Express and PCIe are registered trademarks or trademarks of PCI-SIG. All other trademarks are the property of their respective
owners. 16146 05/21 SA/VY/PDF

Summary
Assertion-based formal verification continues to demonstrate value in the development of leading-edge standards, across
the Cadence Controller portfolio for PCIe. Although formal verification using the Cadence JasperGold platform has been used
in a targeted way, it has proven to be a key tool for solving very complex verification challenges and maximizing overall verifi-
cation efficiency.

	f Approximately 10% of the total bugs found during PCIe and CXL verification were via formal verification

	f The engineering effort to find this 10% of project bugs required significantly less than 10% of the project’s verification team,
therefore demonstrating a high return on investment

	f The bugs found by formal verification were mainly non-trivial as most of the blocks had undergone some initial verification
using a UVM testbench

	f The formal work also led to significant improvements in internal documentation where specification gaps and ambiguities
were quickly identified and cleaned up

	f The formal work led to significant reductions in the top-level simulation effort: The improved block quality reduced the time
spent debugging failing simulations, while closing coverage at the block level prevented the need to repeat full metric
closure of these same blocks in simulation

The adoption of formal verification for critical sub-modules of the IP is particularly important in newly released standards
where the specification is raw and prone to different reader interpretations, coupled with the fact that the independently
developed VIP is being developed in parallel to the Design IP and will take time to reach maturity for top-level testing.

Further Resources
	f Cadence Design IP Portfolio: https://ip.cadence.com/ipportfolio/ip-portfolio-overview

	f Paul McClellan, “CCIX Update: TSMC, Xilinx, Cadence, Arm...and Jasper”, Breakfast Bytes blog, posted November 28, 2017:
https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/ccix-update-tsmc-xilinx-cadence-and-arm

	f Cadence, “Arm, Cadence and Xilinx Introduce First Arm Neoverse System Development Platform for Next-Generation
Cloud-to-Edge Infrastructure, Implemented on TSMC 7nm Process Technology,“ press release, announced March 12, 2019:
https://www.cadence.com/ko_KR/home/company/newsroom/press-releases/pr/2019/arm--cadence-and-xilinx-intro-
duce-first-arm-neoverse-system-deve.html

https://ip.cadence.com/ipportfolio/ip-portfolio-overview
https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/ccix-update-tsmc-xilinx-cadence-and-arm
https://www.cadence.com/ko_KR/home/company/newsroom/press-releases/pr/2019/arm--cadence-and-xilinx-introduce-first-arm-neoverse-system-deve.html
https://www.cadence.com/ko_KR/home/company/newsroom/press-releases/pr/2019/arm--cadence-and-xilinx-introduce-first-arm-neoverse-system-deve.html

	Introduction
	Definition of “Formal”
	Why Not Just Use UVM?
	Evolving Adoption of Formal for PCIe
	CXL Controller
	Training Sequence Decoder
	Frame Decoder
	ECC Gen 6
	CXL Arb/Mux
	Verification Strategy
	Formal Benefits
	Summary
	Further Resources

