
Introduction

All processors do not yield similar performance for a particular application.
A key differentiating factor among processor architectures is the number of
operations that are issued and executed in parallel per clock cycle. Applied
parallelism enables a processor to either complete more work at a given clock
rate or complete a given amount of work at a reduced clock rate, improving
efficiency. Most tasks contain a certain amount of parallelism, primarily data-
and instruction-level parallelism.

Data-level parallelism, which allows the processor to apply the same operations
to individual pieces of independent data, can easily be exploited by appropriate
single-instruction, multiple-data (SIMD) function units. Instruction-level paral-
lelism can be implemented through several architectural schemes that enable
the processor to execute multiple operations at the same time. One way to
simultaneously execute multiple independent instructions is to use a very
long instruction word (VLIW) architecture that permits a compiler to encode
multiple operations into one long instruction. Another way to execute multiple
operations—usually dependent operations—in one clock cycle is to fuse the
operations into one instruction. A multiply/accumulate (MAC), which fuses a
multiplication operation with an addition operation, is a common version of a
fused DSP operation.

Both computational and I/O operations benefit when designers exploit the
parallelism inherent in most embedded tasks—and benefit even more when
computational and I/O operations are combined. RTL hardware designers
routinely exploit task parallelism with their hardware designs. However, many
ASIC and SoC designers miss out on this opportunity because they regard
processor IP as unchangeable, fixed blocks, as processor architectures histori-
cally required specially trained designers to develop custom-build processors
that were tailored to be efficient for targeted applications.

TIE Language—The Fast Path to High-Performance
Embedded SoC Processing

While using custom RTL accelerator blocks in data-intensive functions can provide high performance,
they may require long design and verification cycle times. As an alternative, processor-based designs
can reduce time-to-market and improve design flexibility while still achieving reasonable performance.
Optimizing Cadence® Tensilica® Xtensa® processors with new instructions and additional bandwidth
using the Tensilica Instruction Extension (TIE) language enables you to compute and move data tens
or hundreds of times faster than conventional processors, resulting in an SoC that is smaller, cheaper,
faster, and consumes less energy. This white paper introduces the easy-to-use TIE language—which
is similar to Verilog—as well as TIE techniques for accelerating computation and communication in an
Xtensa processor.

Contents
Introduction1

Using Xtensa Processors to
Accelerate Your Design......................2

Tensilica Instruction Extension (TIE)
Language ..2

Performance Acceleration
Techniques Using TIE3

Optimizing a Function: pop_count6

Customizing Storage—Adding
a Register or Register File...................8

Adding I/O Interfaces to
the Xtensa Processor9

Using TIE Intrinsics in C Programs11

Conclusion11

Additional Information11

The advent of customizable processor IP changes the game. A much broader range of designers—not just
processor designers—can now develop processor IP that is tailored to specific tasks. These processors deliver the
same or nearly the same level of performance as custom-built RTL blocks and offer several significant advantages.

Using Xtensa Processors to Accelerate Your Design

Optimizable Xtensa processors enable you to quickly develop extremely efficient function blocks for your SoC
designs so you can:

• Future-proof your design—firmware is programmable to accommodate changes in requirements, specifications,
and standards

• Use an automated process to build the Xtensa processor, creating guaranteed correct-by-construction
functionality

• Avoid lengthy RTL verification time

• Reduce energy consumption by reducing the overall task execution time

• Get a unique, custom, and proprietary processor that no one else can replicate—protecting your intellectual
property

• Optimize using C, no assembly coding required

Customization creates a unique processor that quickly executes your target tasks while providing flexibility through
firmware programmability. See the Ten Reasons to Optimize a Processor white paper for more details.

You can optimize Xtensa processors using a wide range of checkbox options, including hardware multipliers,
dividers, and DSP function units. Clicking a box adds the desired functions and makes the appropriate changes to
the software-development tools, simulation models, and processor hardware RTL.

In addition, there is an even more powerful way to optimize an Xtensa processor—through a processor-description
language called Tensilica Instruction Extension (TIE). TIE is a simple way to make Xtensa processors more efficient,
extending the functionality by defining custom execution units, register files, I/O interfaces, load/store instructions,
and multi-issue instructions.

Tensilica Instruction Extension (TIE) Language

The easy-to-learn TIE language builds on familiar syntax to enable you to move data significantly faster than
conventional processors, resulting in a more efficient and less expensive SoC that consumes less energy. With
a few lines of TIE, you can make a dramatic difference in the Xtensa processor’s performance and flexibility for
targeted tasks:

• Create new instructions to increase processor performance and efficiency
 – Reduce bandwidth of standard size transfers—define the exact data width needed for your application
 – Fusion—merge serial operations into a single instruction that can be issued back-to-back to achieve single
cycle throughput

• Exploit data-level parallelism
 – Create SIMD registers and operations, and perform the same operation across multiple elements of a
vector word

• Exploit instruction-level parallelism
 – Create multi-operation instructions using the Xtensa Flexible Length Instruction eXtensions (FLIX)—a
multi-issue VLIW with variable slot widths

• Increase data bandwidth—connect to RTL blocks, memories, or other processors via custom processor interfaces
without going through the system bus, reducing I/O bottlenecks and improving data throughput
 – Ports (general-purpose I/O, or GPIO) for point-to-point direct connections without flow control
 – Queue (FIFO) interfaces for point-to-point data transfers that require flow control
 – Memory lookup interfaces to connect to arbitrary-width memories or RTL blocks for low-latency data transfers

You will find that TIE is easy to learn—its syntax is a mixture of Verilog, a hardware description language (HDL),
and the C programming language. You do not need to worry about pipelining, control/bypass logic, and inter-
facing to other processor modules as the instruction extensions you define are integrated directly into the Xtensa
processor pipeline. Note that TIE is used only for adding instruction extensions and datapaths to an Xtensa
processor pipeline—it is not a general-purpose hardware design language.

www.cadence.com 2

TIE Language—The Fast Path to High-Performance Embedded SoC Processing

The Xtensa processor supports a variety of extensions, such as single- and multi-cycle TIE, data to and from new
storage, multi-issue (FLIX), data to and from memory, and data to and from I/O interfaces. Figure 1 shows typical
TIE instruction extensions that can be added to an Xtensa processor instruction pipeline, which is a 5- or 7-stage
pipeline. Refer to the Xtensa Instruction Set Architecture (ISA) Reference Manual for details.

Data Memory
Access

Register
File

(Write)

Register
File

(Read)

Register
Files

(Write)

Register
Files

(Read)

Input
Ports

Output
Ports

Input
Queues

Output
Queues

Instruction
Decode

Instruction
Memory
Access

ALU

ALU

Base Pipeline
Single- and Multi-Cycle TIE
Data To/From New Storage
Multi-Issue (FLIX)
Data To/From Memory
Data To/From I/O Interfaces

Figure 1: Xtensa processor instruction pipeline

Performance Acceleration Techniques Using TIE

TIE supports a number of techniques for performance acceleration. For details about TIE syntax or writing opera-
tions, refer to the Tensilica Instruction Extension (TIE) Language Reference Manual.

Using Fusion

Fusion increases performance by combining multiple operations into a single instruction. In programming, loops are
commonly used to iteratively calculate the resulting value. For example, the following C code shows an inner-loop
code of a simple C for-loop:

 unsigned int a[N], b[N], c[N], i ;
 for (i = 0; i < N; i++) {
 c[i] = (a[i] + b[i]) / 2 ;
 }

www.cadence.com 3

TIE Language—The Fast Path to High-Performance Embedded SoC Processing

Compiling this code on the Xtensa processor results in the following disassembly code for the inner for-loop:

 …
 add.n a9,a11,a10
 srli a9,a9,1
 …
 }

Notice that two instructions are executed sequentially. The first operation, add.n, calculates the two’s complement
32-bit sum. The second operation, srli, shifts the contents by a constant amount encoded in the instruction word
right (inserting 0s on the left). Each iteration of the for-loop executes in two cycles.

With TIE, we can fuse the two operations into a single new operation called addshift that performs both the add
and shift operations at the same time.

Now, compiling the for-loop using the new fused operation, the disassembly code shows the fusion operation
addshift that executes in a single cycle:

 …
 addshift a12,a10,a8;
 …
 }

The TIE file contains the TIE code for this new operation as shown in Figure 2. For details on syntax and how to
define the operation, see the Tensilica Instruction Extension (TIE) Language Reference Manual.

operation addshift {out AR avg, in AR A, in AR B} {}
{
 assign avg = (A + B) >> 1 ;
}

Figure 2: TIE operation addshift

The unique name addshift is assigned to this new operation definition. The TIE Compiler automatically generates
an opcode for the addshift operation, and all Xtensa software tools are automatically updated to understand the
function and timing of the addshift operation.

Note that Address Register (AR) is a predefined type that refers to the processor’s general AR register file.

The behavioral description for this operation is the combinational logic between input and output operands.
By default, the operation executes in a single cycle, but you can also create multi-cycle operations (described in
more detail later in this white paper). You can use expressions to compute values and assign to output operands
or temporary wires. Use assign for assignment to any out or inout operand. Use wire to instantiate a local
expression (more about wires later). Note that each wire, out, or inout operand can only be assigned once. In
this example, the sum of input operands A and B is right-shifted once (divide by two) and assigned to the avg
output operand.

www.cadence.com 4

TIE Language—The Fast Path to High-Performance Embedded SoC Processing

Exploiting Data-Level Parallelism—SIMD Example

Single instruction, multiple data (SIMD) functionality is used to increase performance by executing the same
computations on independent vector data.

For example, in the following C code, the sum is calculated for each iteration of the for-loop on independent data:

 unsigned short
 A[VECLEN],
 B[VECLEN],
 sum[VECLEN] ;
 for (i = 0; i < VECLEN; i++) {
 sum[i] = A[i] + B[i] ;
 }

The loop execution can be accelerated by performing multiple additions per cycle. A TIE register file can hold the
SIMD data and create a new instruction that simultaneously performs multiple additions:

	 regfile	simd64	64	16	v	 //	16-entry	register	file	that	is	64	bits	wide
	 operation	vec4 _ add16	{	out	simd64	res,	in	simd64	A,	in	simd64	B	}	{	}	
 {
 wire [15:0] rtmp1 = A[15: 0] + B[15: 0] ;
	 	 wire	[15:0]	rtmp2	=	A[31:16]	+	B[31:16]	;
	 	 wire	[15:0]	rtmp3	=	A[47:32]	+	B[47:32]	;
	 	 wire	[15:0]	rtmp4	=	A[63:48]	+	B[63:48]	;
	 	 assign	res	=	{	rtmp4,	rtmp3,	rtmp2,	rtmp1	}	;
 }

Each entry in the TIE register file simd64 holds 64-bit SIMD data (i.e., four 16-bit values), usually referred to as a
“vector.” Vectorization is the process of packing more than one data value into a larger data type for SIMD opera-
tions.

The TIE operation vec4 _ add16 performs SIMD addition with a 4X performance increase compared to the original
C code.

	 simd64	A[VECLEN/4];	//	Input	vectors
	 simd64	B[VECLEN/4];	//	Input	vectors
	 simd64	sum[VECLEN/4];	//	Output	vectors
	 for	(i=0;	i<VECLEN/4;	i++){
	 			sum[i]	=	vec4 _ add16(A[i],B[i]);
 }

Using FLIX to Issue Multiple Operations in Parallel

TIE allows you to pack multiple operations into a single instruction that executes in a single cycle. The Xtensa
processor uses an innovative approach to VLIW design called FLIX (Flexible Length Instruction eXtensions), which
gives you the flexibility to modelessly intermix smaller instructions with multi-operation FLIX instructions. By
packing multiple operations into 32-bit to 128-bit instructions in 8-bit (1-byte) increments, FLIX allows you to accel-
erate a broader class of embedded applications while eliminating the performance and code-size drawbacks of
conventional VLIW processor architectures.

For example, consider code for a simple C for-loop:

 for (i=0; i<n; i++)
 c[i]= (a[i]+b[i])>>2;

www.cadence.com 5

TIE Language—The Fast Path to High-Performance Embedded SoC Processing

Compiling this code on the Xtensa processor without the FLIX implementation results in the following disassembly
code:

 loop:
 …
	 		addi		a9,		a9,			4;	
	 		addi		a11,	a11,		4;	
 l32i a8, a9, 0;
 l32i a10, a11, 0;
 add a12, a10, a8;
 srai a12, a12, 2;
	 		addi		a13,	a13,		4;	
 s32i a12, a13, 0;

The compiler executes the for-loop code one instruction at a time without FLIX, taking eight cycles to execute a
single iteration, where the total cycles is based on n iterations.

Adding FLIX to your Xtensa processor improves performance by issuing multiple operations in parallel. With some
additional hardware for parallel processing, a FLIX implementation can greatly reduce the overall execution cycles
of your application program.

When compiling the same for-loop code on the Xtensa processor with a 64-bit FLIX implementation, three opera-
tions can be bundled in a single instruction, resulting in the following disassembly code:

 loop:
 { addi ; add ; l32i }
 { addi ; srai ; l32i }
 { addi ; nop ; s32i }

With FLIX, the compiler executes the for-loop code in three cycles, which is a tremendous performance
improvement versus the eight cycles without FLIX. In this case, FLIX bundles a maximum of three operations in a
single instruction word where possible for parallel processing.

Note that a NOP (no operation) operation is inserted in a slot when an operation cannot be placed for parallel
execution. The compiler can choose to use FLIX or not from one instruction to the next without penalty so that it
does not need to insert NOP operations each time.

Refer to the Increasing Processor Computational Performance with More Instruction Parallelism white paper for
more details.

Optimizing a Function: pop_count

This example shows various methods of accelerating performance for a commonly used function.

For some algorithms, it is useful to know how many bits in a register are set to a value of 1. For example, an OS
may want to know how many interrupt request bits are set, or a compression routine may need the Hamming
distance of a string. The task of counting the number of 1s in an operand is called population count, or
pop _ count. Many C compilers have a built-in function for pop _ count.

Various software algorithmic methods and hardware TIE implementations can be incorporated to improve the
pop _ count computation performance, reducing the needed compute cycles.

For example, the following basic C routine performs pop _ count for a 32-bit value:

 // unsigned int x contains input value

	 unsigned	int	y=0;
 unsigned int i;
 for(i = 0; i < 32; i++) {
	 		if((x&1)	==	1)	y++;		 	 //	Increment	counter	if	bit	is	set
 x = x >> 1; // Shift to prepare for next bit
 }
	 //	y	contains	result

www.cadence.com 6

TIE Language—The Fast Path to High-Performance Embedded SoC Processing

This code steps through each bit of a 32-bit operand, and if that bit is 1 it increments a counter. Note that the loop
always performs 32 iterations. This algorithm takes ~70 clock cycles to perform, which is an expensive implemen-
tation since throughput is low and power consumption is high.

The pop _ count computation can be optimized using various clever techniques. For example, you can reduce the
32 loop iterations down to only iterate as many times as there are 1s in the operand. Assuming an even probability
distribution, on average the loop would iterate 16 times. This C algorithm translates into a binary subtraction and a
logical AND operation to compute the pop _ count value.

 // x contains input value
 // count returns pop count

 unsigned int x;
 unsigned int count;
 for (count=0; x!=0; count++) {
	 				x	&=	x-1;
 }
 // count contains result

This code shows the assembly for the inner-for loop, which translates to two instructions:

 // R2 contains the operand
 // R1 is a temp reg

 SUB R1, R2, 1
 AND R2, R2, R1

Assuming 14 clocks, we now have 46 cycles on average to compute pop _ count compared with the previous 70
clock cycles, which is a 1.5X speedup compared to the original C routine. Changing the algorithm cuts time and
reduces energy.

With the Xtensa processor, we can define a new TIE instruction, DECR _ AND, to fuse the subtraction and logical
AND operations into one new operation:

	 operation	DECR _ AND	{out	AR	count,	in	AR	x}{}{	
	 	 assign	count	=	x	&	(x	-1);
 }

The assembly for the inner-for loop using the new TIE instruction is just one instruction:

 // R1 contains the operand

	 DECR _ AND	 R1,	R1

By adding the TIE instruction, we save 16 clocks, reducing from 46 to 30 cycles for a 2.3X speedup compared to
the original C routine.

Additionally, further performance improvements can be achieved by combining different software algorithm
techniques. For example, using stored constants, we can replace the loop with C statements that sum adjacent bits,
bit pairs, nibbles, and bytes, while accumulating the result each time. These computations can be performed using
SHIFT, AND, and ADD instructions. The disadvantage of this method is that the constants need to be preloaded into
registers, incurring load operation overheads.

Alternatively, we can use an all-hardware implementation to overcome the limitations of software by directly
building a pop _ count instruction in the Xtensa processor.

www.cadence.com 7

TIE Language—The Fast Path to High-Performance Embedded SoC Processing

The new C code is:

 // unsigned int x contains input value

	 unsigned	int	y	=	POP _ COUNT(x);	//	single	cycle	
	 //	y	contains	result

The TIE definition for the pop _ count operation is:

	 operation	pop _ count	{out	AR	co,	in	AR	ci}{}{
	 	 wire	[3:0]	a0	=	ci[0]	+	ci[1]	+	ci[2]	+	ci[3]	+	ci[4]	+	ci[5]	+	ci[6]	+	ci[7];
	 	 wire	[3:0]	a1	=	ci[8]+ci[9]	+	ci[10]	+	ci[11]	+	ci[12]	+	ci[13]	+	ci[14]	+	ci[15];
	 	 wire	[3:0]	a2	=	ci[16]+ci[17]+ci[18]	+	ci[19]	+	ci[20]	+	ci[21]	+	ci[22]	+	ci[23];
	 	 wire	[3:0]	a3	=	ci[24]+ci[25]+ci[26]	+	ci[27]	+	ci[28]	+	ci[29]	+	ci[30]	+	ci[31];
 wire [5:0] sum = a0 + a1 + a2 + a3;

	 	 assign	co	=	{26’b0,	sum};
 }

TIE wires are used to create complex expressions from a set of simple expressions that can be declared, assigned,
and used within a TIE operation. Each TIE wire can be assigned only once and can be used any number of times.

The entire pop _ count function can be reduced to a single operation that executes in a single cycle, providing
a 70X speedup over the original basic C code. A hardware designer would take this solution, but a programmer,
limited by off-the-shelf processors, has to find ways around the hardware limitations. TIE and Xtensa processors
allow programmers and hardware designers to collaborate in the design space without barriers to make highly
effective and efficient targeted processors.

Customizing Storage—Adding a Register or Register File

The Xtensa instruction set architecture (ISA) defines a general-purpose AR register file with access to sixteen
32-bit registers.

A specific data width can be desirable to optimize processing performance, reduce system bandwidth overheads,
and save memory. For example, if an application requires a 24 x 24 multiply with a 56-bit accumulate, it is incon-
venient to use a 32-bit AR register file for storing the accumulator. You would need two AR registers to hold the
56-bit value (wasting bandwidth) and more instruction encoding bits, and the number of ports on the AR register
file may increase.

Xtensa processors offer two types of architectural storage:

• A single instance of a register called state

• Register files

A TIE regfile directive adds a new register file to the processor that can be up to 1,024 bits wide and have up to
128 entries. You can add multiple TIE register files to meet your application’s needs.

For a SIMD example, we can add a 64-bit, 16-entry register file called simd64:

	 regfile	simd64	64	16	v	 //	16-entry	register	file	that	is	64	bits	wide	with	v	
 // as the short name

The new register file can be used in any TIE operation as an input, output, or inout operand. It can be listed in the
explicit operand list, and will be visible in assembler syntax and in an intrinsic argument list. The number of read/
write ports is determined by the TIE operations that use the register file. The following example uses simd64 for
various operand types:

	 operation	add64	{	out	simd64	res,	in	simd64	A,	in	simd64	B	}	{	}	
 {
 assign res = A + B ;
 }

www.cadence.com 8

TIE Language—The Fast Path to High-Performance Embedded SoC Processing

Adding I/O Interfaces to the Xtensa Processor

Designers can add multiple I/O interfaces to the Xtensa processor to execute data transfers in a single cycle or
with a fixed latency. As shown in Figure 3, multiple Ports (GPIO), Queues (FIFO), and memory Lookup interfaces
can be added that bypass the Xtensa load/store units altogether. These interfaces are simple, direct communi-
cation structures. Transactions conducted over these interfaces are not accessed by addresses supplied by the
processor. Instead, these simpler structures are accessed by TIE instructions that implicitly initiate the transactions.
Transactions over Ports and Queues execute in a single cycle, and over Lookups with a fixed latency. One custom
instruction can initiate transactions on several interfaces at the same time to boost I/O bandwidth per cycle by two
or three orders of magnitude.

RTL RTL

RTL,
Peripherals

Scratchpad,
Lookup
Memory

FIFO

FIFO

FIFO

FIFO

System Blocks

System Bus

Xtensa
Processor

Q
ue

ue
 In

te
rf

ac
e

Q
ue

ue
 In

te
rf

ac
e

Po
rt

Po
rt

Q
ue

ue
 In

te
rf

ac
e

Lo
ok

up
 In

te
rf

ac
e

Po
rt

RAM, Cache

Figure 3: Ports, Queue, and Lookup interfaces allow direct data transfers

Ports

Ports act like general-purpose I/Os (GPIOs) and are wires that directly connect two Xtensa processors or an Xtensa
processor to external RTL. Port connections can be up to 1,024 wires wide, allowing wide data types to be easily
transferred without requiring multiple load/store operations. Ports are particularly useful to convey control and
status information.

Ports do not implement any handshake mechanism to tell the external world when a value is updated on an output
port or when a value is read from an input port. There are two TIE Port types:

• Export State—State made visible to the external world

• Import Wire—External wires made visible to the data path of an Xtensa processor

See the High-Speed Alternatives for Inter-Processor Communications on SOCs white paper for additional infor-
mation.

Queue Interfaces

Queue interfaces enable simple connectivity from an Xtensa processor to external synchronous, first-in-first-
out (FIFO) devices. Two types of Queue interfaces can be created: an input Queue interface and an output
Queue interface. The Queue interface adds wide datapaths and handshake signals that allow data to move every
cycle. In the simplest case, you can create TIE instructions that pop data from input Queues and push data onto
output Queues.

Figure 4 shows an output Queue interface. Three ports are created for every output Queue interface
(TIE _ MY _ OQ _ Full, TIE _ MY _ OQ _ PushReq, and TIE _ MY _ OQ[31:0]).

www.cadence.com 9

TIE Language—The Fast Path to High-Performance Embedded SoC Processing

RTL Queue

Xtensa
Processor

TIE_MY_00_Full
TIE _MY_00_PushReq
TIE_MY_00[31:0]

Figure 4: Example of a TIE output Queue Interface

This TIE code defines a 32-bit output Queue interface called MY _ OQ:

	 queue	MY _ OQ	32	out
	 operation	MY _ PushQ	
	 			{in	AR	qdata}	
	 			{out	MY _ OQ}	{
	 	 assign	MY _ OQ	=	qdata	;
 }

The pushed value can either come from an input operand or can be computed within the instruction.

Example C code using this Queue is:

	 #include	<xtensa/tie/outqueue.h>
 …
 int data = 12 ;
	 MY _ PushQ(data)	;
 …

Similarly, an input Queue interface is defined with three ports: TIE _ MY _ IQ _ Empty (input),
TIE _ MY _ IQ _ PopReq (output), and TIE _ MY _ IQ[31:0] (input).

Lookup Interfaces

A Lookup interface is a useful extension for directly connecting to external memories (e.g., ROM and RAM) for
performing table lookups, or connecting to special-purpose hardware with fixed latencies (e.g., other RTL). The
Lookup structure designates both input and output ports so that a TIE operation can send out a value, perhaps a
command or address, and receive back data within the same instruction (a specified number of clock cycles later).
Note that a TIE operation can access multiple wide memories simultaneously. Lookups are not in the memory
address space of the processor, so code running on the processor can get fast access to special memories or banks
of external registers without slow, 32-bit wide load/store bottlenecks that must be conducted over the proces-
sor’s bus.

Lookups perform atomic transactions with an output phase where a request is made (and the Xtensa processor
outputs the address) followed by an input phase where a response is expected (e.g., external logic returns the
data). A Lookup can specify the delay in clock cycles between the output request and the corresponding data
response. Even though a lookup is a multi-cycle access, lookup requests are fully pipelined.

See the High-Speed Alternatives for Inter-Processor Communications on SOCs white paper for more information on
Ports, Queues, and Lookups.

www.cadence.com 10

TIE Language—The Fast Path to High-Performance Embedded SoC Processing

Using TIE Intrinsics in C Programs

Intrinsic functions are widely used by compilers for performing architecture-specific optimizations from C or C++
code. For instance, Microsoft compilers use intrinsics to generate assembly containing X86 SIMD instructions.
Intrinsic functions enable the use of TIE instructions in C or C++ programs.

TIE developers can define operations on user-defined TIE data types to use standard C operators (such as +, -, *
and /), allowing C programmers to use a more natural programming style, without intrinsics. The syntax is similar
to an in-line function. The arguments are standard C or user-defined data types. An intrinsic implementation
is handled by the Xtensa C/C++ Compiler (XCC), which checks the type of input/output arguments, performs
necessary data movement, and translates into TIE instructions.

A C file contains the following code:

 #include <xtensa/tie/avg.h>
 unsigned int a[N], b[N], c[N], i;
 for (i=0; i<N; i++) {
 c[i] = addshift(a[i], b[i]);
 }

For the XCC compiler to understand the intrinsic, the C file must include the header file, which contains the
prototype definition of the addshift intrinsic.

Similar to a C function, a TIE intrinsic can have type 32-bit signed constants, variables of C, or user-defined data
type input/output arguments. Each argument can be an input, output, or inout.

The TIE intrinsic prototype definition closely resembles the C function prototype definition. It contains the forward
declaration of the TIE intrinsic that omits the function body (implementation) and describes the TIE intrinsic’s
return type, name, and input argument types. The prototype definition can be described in the TIE header file or
ISA HTML.

Conclusion

By writing a few lines of basic TIE commands, you can easily optimize an Xtensa processor for your application. You
can add new operations that reduce execution cycles, and create additional I/O interfaces that accelerate commu-
nication. The examples discussed in this white paper provide a glimpse of the power of TIE and how easily and
quickly you can customize the Xtensa processor to meet your application’s needs, providing optimum results not
achievable from standard processors and avoiding lengthy RTL design and verification times.

Refer to the Tensilica Instruction Extension (TIE) Language Reference Manual and the Tensilica Instruction Extension
(TIE) Language User’s Guide for more details on the TIE commands and advanced features.

Additional Information

For more information on the unique abilities and features of Cadence Tensilica Xtensa processors,
see ip.cadence.com.

Cadence Design Systems enables global electronic design innovation and plays an essential role in the
creation of today’s electronics. Customers use Cadence software, hardware, IP, and expertise to design
and verify today’s mobile, cloud and connectivity applications. www.cadence.com

© 2016 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, Tensilica, and Xtensa are registered trademarks of
Cadence Design Systems, Inc. in the United States and other countries. All rights reserved. All other trademarks are the property of their respective
owners. 5853 01/16 SC/DM/PDF

TIE Language—The Fast Path to High-Performance Embedded SoC Processing

