

New Techniques to Address Layout Challenges of High-Speed Signal Routing

Marita Baldwin, Cadence SPB R&D Principal Software Engineer Vince Di Lello, Cadence SPB Sr. Principal Product Engineer PCB West 2016

cādence

Trend Today

- Ever increasing data rates; more high-speed signal routing
- Signal quality issues arise: Reflection, loss, cross-talk
- Need for decreased design cycle time

Fast Data Rates and Faster Edges

How Does This Impact the PCB Design Task?

- Greater layout requirements
- New and more complex routing strategies to better control impedance and crosstalk
 - Implementation is oftentimes manual, time-consuming, and prone to layout errors or misses
- Increased need for pre-layout simulation
- Less layout time

In this Session...

• We will talk about new layout techniques that provide a faster and easier mechanism to meet today's complex high-speed signal routing requirements

High-Speed Signal Requirements We Will Cover...

- Return path
- Mitigating fiber weave effect
- New tabbed routing technology

Return Path

6 © 2016 Cadence Design Systems, Inc. All rights reserved.

Understanding Return Path

- Currents must always return to their source
- Return current will return to their source along the path of the least impedance

The return currents must complete the loop

Providing Return Path

- For system clocks and high-speed I/O interfaces—such as DDR, PCI Express[®] (PCIe[®]), USB, SATA, etc.—if via transition is necessary, it is required to place return path via(s) as close as possible to the location of transition
- Without proper placement of return path vias, the return current must find its own way
- Results in the current spread over a large area, which greatly increases the possibility of cross contamination with other signal currents, creating a loss of SI

Ground vias at layer transition Provides low impedance path for current to return to source

High-speed differential signals

Most Common Guidelines for High-Speed Via Transitions

- Use closely coupled impedance matched differential vias
- Use return vias in close proximity to signal vias
- Use large clearance hole (anti-pad) in the via stack

Today's Typical User Flow

- Some don't worry about return path vias until finished with all connections
- Some will route the high-speed signals and follow up manually with return path vias
- Some have convoluted solutions where they have built schematic/physical symbols and put these into the netlist

Layout Challenges

cādence°

New Layout Technique to Address These Challenges

- Use of via structures—A unique methodology that allows you to create reusable elements where you can define correct-by-design high-speed via transitions with custom return paths and voids
- The following slides will describe this new technique using Cadence[®] Allegro[®] high-speed via structures

What Is a Via Structure?

- Combine vias, clines, shapes, and route keepouts into a single reusable design element
- Defined as non-component symbols in database
- Supports import and export of XML files containing via structure definition for analysis and re-use in other database

Create It Once

- SI engineers are getting more creative, which results in more complex requirements on:
 - Return path vias: type (thru, BB stacked/staggered), quantity, pattern, and proximity locations
 - Differential pair pad entry/exit (trace width, entry/exit pattern)
 - Void (layers, pad clearance, shape)
- Create one instance per requirement and define as via structure

Allegro Platform Creates High-Speed Via Structure

cādence[®]

Re-Use Multiple Times

- Place high-speed via transitions as one entity—is a whole lot faster to add and manage in design
- Re-use in same design or another database
- Via structures stay together during placement and interactive editing so they can never be unintentionally altered to ensure the design intent always remains intact

Change Is Easy

 Using via structures makes it easier to replace some or all instances with a different via structure

Options Visibility Find		
Options _ B ×		
	• • • 👗	
		🖕 🎻 👘 DP_INLINE
Ignore Fixed Property		
Via Structure names	• • • •	
Old: DP_INLINE	• •	• •
New: DP_RECTANGLE		• • • • • • • • • • • • • • • • • • •
	DP_RECTANGLE	
Assign return path net	• •	
Selection Method	• •	
 Window Selection 	• • •	
Net: *		
 Manual Filter 		
Symbol: ×		• • •
BefDes: *	• •	• •
Pin #: ×	• • •	
Net ×		
Replace Reset		
Inchiace Ineser		

Allegro Platform Replaces Via Structure

Analysis Is Key, Optimize

cādence[®]

Fiber Weave Effect

18 © 2016 Cadence Design Systems, Inc. All rights reserved.

What Is "Fiber Weave Effect"?

- Timing or phase skew caused by fiberglass reinforced dielectric substrate between two transmission lines of the same length
- Traces routed directly over the fiberglass weave will see a different dielectric constant than the traces that are routed over the voids in the weave where only epoxy resin is present
- At high data rates, this dielectric constant mismatch can cause signal integrity issues when running these high-speed signals parallel to the void areas of PCB fiberglass weave

Trace running directly over glass fiber

Trace running directly over epoxy

This results in a degraded differential signal as glass and epoxy have different permittivities on PCBs

Typical Layout Routing Guideline

When routing for a considerable length, it is oftentimes recommended to do zigzag routing to mitigate the negative effects of fiber weave on high-speed differential signals by forcing the traces to be out of alignment with the fiber weave

- Angle of zigzag can be 1-10 degrees to skew traces relative to weave
- Typical value used is 10 degrees to sufficiently skew trace

Typical for **>5GT/s**, the fiber weave effect becomes significant when the trace alignment to weave is 4"or longer

Typical User Flow

- User manually constructs routes rotated at 10 degrees
- If doing zigzag routing, user will have to manually ensure lengths of each "zig" do not go beyond maximum recommended length
- Copy zigzag routes to other buses

Using Allegro Route Offset in Add Connect

Copying Zigzag Routing

Layout Challenges

- CAD tools don't easily support routing at angles other than 0, 45, or 90 degrees
- Significant increased layout time
 - Estimated routing time is at least doubled compared to typical orthogonal routing
 - More painful and time consuming to edit layout

New Layout Technique to Address These Challenges

- Route in normal orthogonal or 45 degrees, which is easier to finish connections and make edits as necessary
- Once routing is final, convert orthogonal or 45 degree traces to zigzag
- The following slides will describe this new technique using Allegro Add Zigzag Pattern

Recommended Design Preparations

- Route high-speed signals as normal in orthogonal or 45 degrees
- Make sure that traces are parallel
- Plan ahead and leave enough spacing when routing traces for phase bumps

Route in orthogonal or 45 degrees Keep traces parallel

Plan for phase bumps as needed

Using Add Zigzag Pattern

- Specify zigzag angle and max length per SI guidance
- Based on area spacing, specify whether to place zigzag centered relative to axis of original segment

Options	д * Х		
Active etch subclass:		Max length	Angle offset
Net: Gap in use:			
Fiber weave options			
Angle offset: 10 Max length:			
Centered zigzag		Centered zigzag – option unchecked	
E Full segment			
Allegro Add Zigzag Patte	۱		
		Centered zigzag – option checked	

 Convert full parallel segments automatically or dynamically define start/end points of zigzag conversion

Dynamically define start/end points to maintain routing in pin fields

Full Segment Zigzag Conversions

Tabbed Routing

27 © 2016 Cadence Design Systems, Inc. All rights reserved.

What Is "Tabbed Routing"?

 New routing method in which trapezoidal shapes called tabs are added to parallel traces

Layout Challenges

- Adds a lot of layout complexity to meet requirements
- Design engineers must maintain spreadsheet to do manual tab count matching required to maintain same flight time and achieve crosstalk cancellation effect
- Difficult to manage tabs once placed on routes

The following slides will describe tips and new techniques using Allegro Tabbed Routing to address these routing challenges

Layout Tips and Techniques

- It is recommended to finalize routing and verify trace spacing before adding tabs to cline segments
- To generate tab, select mode, enter tab size/pitch values, and select parallel cline segments to generate tabs using Allegro generate tab

- It is recommended to create the proper constraint regions around the segments with tabs for the different routing regions (i.e., pin field, breakout, and open field) to limit invalid DRCs
- Do not forget to enable the relevant different net and same net spacing checks to capture DRCs, such as below

Users will oftentimes need to move a tab to resolve DRCs created during generation of tabs. Below, Allegro Move Tab is used to move tab along segment while maintaining centerline connectivity. It provides dynamic DRC feedback so you can easily resolve these types of spacing violations.

"Generate Tab" command creates tab on center of arc causing DRC

Use "Move Tab" command to resolve DRC

Tab Count Matching

- Typical requirement is that tab # difference between bits in same byte cannot be more than a certain difference (typically 1 or 2) to maintain same flight time and achieve crosstalk cancellation effect
- Allegro tabbed routing analyze is used to validate and find violations in design:

🍹 Tabbed Routing:	Analyze						×
Tab Count Tab Pit	ch						
– Pass/Fail Criteria							
Tab Type	Count By	+/- Tolerance	Reference Count	Value			
ID2	Size	1	Lowest Count	29:20		Add Rule	
PF1+PF2	Туре		Lowest Count	2			
						View rule tabs	only
					Ŧ		
Nathlana	[Laura]	Tab Tura	L Tab Circ	L Tab Caunt	[Dalka	[Devile [
	Layer	Тартуре	I ab Size		Deita	Hesuit	
×	×	×	×	×	×	×	*
NETA1	TOP	ID2	5-8-8	20	0	PASS	
NETA1	TOP	ID2	3-5-4	29	0	PASS	
NETA1	TOP	PF1+PF2	3-6-5	4	2	FAIL 🖌	
NETA3	TOP	PF1+PF2	3.5-6-5:3-6-5	4	2	FAIL	
NETA3	TOP	ID2	5-8-8	23	3	FAIL	
NETA3	TOP	ID2	3-5-4	29	0	PASS	-
•						۲.	
Close	Clear All	Add Nets	Refresh Re	eport		Help	
		ΔII	earo Analyze	Tab			

Define custom rules for pass/fail criteria and crossprobe violations in canvas for fast fixing

Pin Field Tab # and Interdigital Tab # are usually separate when matching, they cannot be added or removed to meet tab number matching requirements

Violations shown in red—when selected, cross probes in design for easy identification and fixing

Generate custom reports to suit various data needs

- Easier to delete tabs to meet tab count matching requirement than to add tabs
- Recommend to set Reference Count = Lowest, which sets reference count used for Pass/Fail criteria during tab count matching to be the lowest tab count from selected nets per tab type/size

	lon						
Tab Type	Count By	+/- Tolerance	Reference Cour	nt Value	1		
102	Size	1 1	Lowest Count	29.20		Add Bule	1
PF1+PF2	Туре	1	Lowest Count	20.20		1 Idd 1 Idio	1
					-	View rule tab	sc
Net Name	Layer	Тар Туре	Tab Size	Tab Count	Delta	View rule tab	bs
Net Name	Layer	Tab Type	Tab Size	Tab Count	Delta	View rule tab Result	bs
Net Name	Layer × TOP	Tab Type × ID2	Tab Size * 5-8-8	Tab Count × 20	Delta × 0	View rule tab Result * PASS	bs
Net Name TA1 TA1	Layer × TOP TOP	Tab Type * ID2 ID2	Tab Size × 5-8-8 3-5-4	Tab Count × 20 29	Delta × 0 0	View rule tab Result * PASS PASS	bs
Net Name TA1 TA1 TA1	Layer × TOP TOP TOP	Tab Type * ID2 ID2 PF1 +PF2	Tab Size * 5-8-8 3-5-4 3-6-5	Tab Count × 20 29 4	Delta	View rule tab Result * PASS FAIL	bs
Net Name TA1 TA1 TA1 TA3	Layer × TOP TOP TOP TOP	Tab Type * ID2 ID2 PF1+PF2 PF1+PF2	Tab Size * 5-8-8 3-5-4 3-6-5 3-7	Tab Count * 20 29 4 4	Delta	View rule tab Result * PASS FAIL FAIL	
Net Name TA1 TA1 TA1 TA3 TA3	Layer × TOP TOP TOP TOP TOP TOP	Tab Type * ID2 ID2 PF1+PF2 PF1+PF2 ID2 ID2	Tab Size * 5-8-8 3-5-4 3-6-5 3-6-5 3-6-5 5-8-8	Tab Count × 20 29 4 4 23	Delta	View rule tab Result * PASS FAIL FAIL FAIL	

If Allegro Delete Tab is used to delete tabs, analyze table results is automatically updated to make is easy for users to see results

Allegro Delete Tab can delete tabs by instance, cline segment, or cline

cādence

 When different trace widths and spacing are used in open region, different interdigital tab dimensions (sizes) are used

Option is available to do tab count matching separately for each tab size for a given tab type. As an example below, the tabs are all type ID2 but have 2 different tab sizes used for different area of routing.

📝 Т	Tabbed Routing: Analyze									
Ta	h Count II I Di I									
		n								
F	Pass/Fail Criteria									
	Tob Type	Count By	+/- Tolerance	Reference Count	Value	1				
	ID2 Size 1		Lowest Count	29:20	in 🗖	Add Rule				
	PF1+PF2	Туре	1	Lowest Count	2					
							View rule tabs only			
		\mathbf{N}								
						-				
19	L									
	Net Name	Layer	Tab Type	Tab Size	Tab Count	Delta	Result			
×		×		×	×	×	×			
N	ETA1	TOP	ID2	5-8-8	20	0	PASS			
N	ETA1	TOP	ID2	3-5-4	29	0	PASS			
N	ETA1	TOP	PF1+P 2	3-6-5	4	2	FAIL			
	ETA3	TOP	PF1+PF2	3.5-6-5:3-6-5	4	2	FAIL			
	ETA3	TOP	ID2	5-8-8	23	3	FAIL			
N	ETA3	TOP	ID2	3-5-4	29	0	PASS 🚽 👻			
•										

 Typically, same tab dimension in both pin field (PF2) and breakout (PF1) region is applied and tab count is combined

Tab Count Pitch

- For pin field and breakout region where pitch requirement might be relaxed due to non-uniformity in routing, user can set min and max pitch rule values per design guideline
- For Interdigital tabs where the pitch requirement is typically an absolute value, user can set min and max pitch rule values to be the same value

Use move tab to resolve identified pitch violations

Create custom rules and cross probe to easily find violations and fix

cādence[®]

cādence®

© 2016 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and the other Cadence marks found at <u>www.cadence.com/go/trademarks</u> are trademarks or registered trademarks of Cadence Design Systems, Inc. PCI Express and PCIe are registered trademarks of PCI-SIG. All other trademarks are the property of their respective owners.

YOUR FEEDBACK IS IMPORTANT! DON'T FORGET YOUR SPEAKER EVALUATION.

PLEASE REMEMBER TO RETURN THE EVALUATION FORMS TO THE PRESENTER, TO THE REGISTRATION DESK OR TO THE DROP BOX IN THE LOBBY.

THANK YOU, PCB WEST SHOW MANAGEMENT