

How to Efficiently Analyze a DDR4 Interface

Taranjit Kukal Zhen Mu Ph.D Cadence Design Systems MemCon 2015

cādence[®]

Agenda

- Power-aware signal integrity (SI) in memory bus design and analysis
- Modeling methodology for integrated core and power-aware parallel bus system with Cadence-Sigrity tools
- Building an integrated core and power-aware parallel bus system in Cadence-Sigrity tool environment
- Case study
 - A virtual reference design based on the Cadence DDR4 IP test chip, package, and PCB
 - Simulation and measurement correlation

Parallel Bus Analysis at System Level

Challenges to classic SI tools

- As clock rate goes up and design density increases, memory design faces more challenges
 - Data rates increase
 - Core voltage and I/O voltage decrease
 - Impact of power noise on signal increases
 - Noise budget decreases
- SI tools need to provide solutions to meet new design requirements

SSO/SSN impact on design

- Design problems caused by SSO
 - False triggers due to power/ground level changes
 - Reduced timing margin due to SSO induced skew
 - Reduced voltage margin due to power/ground noise
 - Slew rate variation

DDR4 technology demands

- Increasing data rates
- Shrinking design margin
- Decreasing power
- Introducing serial link design methodologies
 - JEDEC standard specifies
 BER for data signals
- Design and analysis need to consider core and system at the same time

Modeling methodology for integrated core and power aware parallel bus system with Cadence-Sigrity tools

7 © 2015 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence and the Cadence logo are registered trademarks and Sigrity is a trademark of Cadence Design Systems.

Core and power-aware parallel bus systems

Core System

 Power-Aware Parallel Bus System
 Package C4-Bumps

Power-aware parallel bus

 PCB parallel bus consists of data and strobe signal nets and power distribution network (PDN)

1st-byte lane of

- DATA (DQ<0>-DQ<7>) and
- STROBE (DQS_N<0> & DQS_P<0>)

2nd-byte lane of

- DATA (DQ<8>-DQ<15>) and
- STROBE (DQS_N<1> & DQS_P<1>)
- PDNs consists of PWR and GND planes of PCB (packages)

Cadence IO SSO Chip-PKG-PCB Co-Simulation

cādence[®]

Core-system model

- R_{grid}, C_{chip} values and current profile are critical for optimizing power integrity performance of Core-PDN
- Minimizing transient voltage drop at the core is critical to guarantee the specified core-operating frequency

A model of power-aware parallel bus system

12 © 2015 Cadence Design Systems, Inc. All rights reserved.

Integrated core and power-aware parallel bus system

Efficient modeling simulation and analysis process for core and system

Building an integrated core and power aware parallel bus system

© 2015 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence and the Cadence logo are registered trademarks and Sigrity and SPEED2000 are trademarks of Cadence Design Systems.

Today's parallel bus design needs new functions for system level design and verification

- Traditionally, all connections of sub-systems have to appear in topology editor
- The complexity of power-aware system makes setup and connection very difficult

Power-aware SI: Cadence[®] Sigrity[™] SystemSI[™] technology

- An evolution from topology based environment and physical layout
 - Keeping the advantage of topology editing
 - Providing a clear view of system connection

Power-aware SI: Cadence[®] Sigrity[™] SystemSI[™] technology (cont')

- Hierarchical bus topologies
 - As simple and direct as in topology environment for pre-layout exploration
 - As efficient and complete as in physical layout for sub-system connections

SystemSI[™] as the design platform

- Blocks represent each sub-system for the integrated core and power-aware parallel bus system
- Built-in, application-specific blocks for

Power-aware IBIS I/O models

- Power-aware I/O buffer models for the controller and memory devices are "must have" for time-domain SSN simulations
 - IBIS 5.0 standard provides power/ground current details
 - Pre-driver current, crow-bar current, and on-die decap current information
 - Simulation with IBIS 5.0 models is efficient and provenaccurate
- Sigrity[™] T2B (transistor-to-behavioral) tool generates the power-aware IBIS models in 5.0 standard

Power-aware IBIS model generation using T2B[™] tool

- Sigrity[™] T2B[™] model conversion utility tool can be used for efficiently converting
 - SPICE-Transistor I/O models to power-aware IBIS I/O models, standard v5.0

cādence[®]

Core model extraction using XcitePI™

Inputs

- LEF/DEF or GDS
- Cadence technology file (.ict)
- XcitePI configuration file

Outputs

- Core / IO interconnect model
 - SPICE netlist
- Model results
 - Power pin RL
 - Power net capacitance
 - Power net impedance
 - Signal net RLC
 - Signal net return and insertion loss

Package model generation using Sigrity™ XtractIM™ tool

 Package model for core and system can be extracted using Sigrity[™] XtractIM[™] tool

PCB model generation using Sigrity[™] PowerSI[™] tool

 S-parameter model of PCB contains couplings between signals and power nets, with true return path represented

Connecting blocks in SystemSI™

• Blocks of core and power-aware parallel bus system are connected through MCP (Model Connection Protocol)

Solution demonstration: An LPDDR4 design

LPDDR4 package-on-package Low-power parallel

- Low-power parallel designs in mobile applications
 - Controller die
 - 12X12mm BGA
 - Pin count = 216
 - Memory package
 - 12X12mm BGA
 - Pin count = 216
 - Bottom package
 - 18X18mm BGA
 - Pin count = 289
 - 4 layers

Package design in Allegro Package Designer

Extracting package interconnects using Sigrity **XtractIM technology**

registered trademarks and Sigrity and XtractIM are trademarks of Cadence Design Systems.

Simulating LPDDR4 design using Sigrity SystemSI technology

© 2015 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence and the Cadence logo are registered trademarks and Sigrity and SystemSI are trademarks of Cadence Design Systems.

cādence

cādence

31

Reporting measurements of a LPDDR4 design using Sigrity SystemSI technology

pecs			Generate	Rend	t	1						
			Generate	керс								×
spec	value	Unit Usage					1					
CA Mask			wavero	orm LO	Pkg Pin	`	Measureme	ant Range: 0			yde 🔽	
Uvef			-40 -	dipci	Logic Toput Louola							
Vref_max	0.42	VDDCA Vcent_CA	AC di	IU DC	Logic Input Levels							
Vref_min	0.22	VDDCA Vcent_CA	Thres	hold:	LPDDR4(Class-1)		-					
vref_step	0.0040	VDDCA Vcent_CA										
vrer_set_toi	0.0010	VDDCA VCent_CA	Sin	ale-F	nded Signals (V)	Differential Si	ionals (V)					
Mask Nethow	175	ml/ CA Mack		9		Differentiation		1	1	1	1	
Tellow	1/5	MV CA Mask	Cas	e #	Corner	VIH(ac) min	VIL(ac) max	VIH(dc) min	VIL(dc) max	VREF(dc)	VDDCA	
Max tokaca	0.5		1		Typ	on-the-fly	on-the-fly	on-the-fly	on-the-fly	on-the-fly	15	
Max tCA2CA					170	off are ny	on alc hy	on the ny	on the ny	on the hy	1.5	
Max ICA2CA	210											
Min TcTPW	0.55											
Min SlewPate Mask	1	V/ns Min SlewPate Mask										
Max SlewRate Mask	7	V/ns Max SlewRate Mack										
Min SlewRate AC Swing	0.2	V/ns Min SlewRate AC Swi										
Max SlewBate, AC, Swing	9	V/ns Max SlewBate AC Sw	, 									
	-	1,10 1 III DICINGEL_10_01	.9									
	efining	eve masks										
		o jo maono										
f C	or Data	and Addr			-1.0-1							
Spec Value	Unit	Usage	Meas	ureme	nt Options							
DQ Mask			🗹 W	/avefo	orm Quality 📃 Ey	e Quality	Timing	DQ/CA I	Mask 🔽	Delay		Specs
Vref												
Vref_max 0.42	VDDQ	Vcent_DQ	Eye T	rigger	Period: TimingRef	- Eye	Aperture: Tra	pezoid	👻 Min Ta	ac Width (% of	[•] UI): 50	
Vref_min 0.22		Vcent_DQ Vcent_DQ	C.L.	-								
Vref set tol 0.00	10 VDDQ	Vcent DQ	Setup	Dera	ting Table:							Open
Mask			Hold (Deratir	ng Table:							Open
VdIVW 140	mV	DQ Mask										
TdIVW 0.22	UI	DQ Mask	Derat	ting Ta	able Extrapolation:	earest	-					
Max tD02D0 30pc		tDO2DO										
Min VIHL_AC 180	mV	VIHL_AC	-нтмі	Head	er							
Min TdIPW 0.45	UI	TdIPW	THE	Г	LDDDD 4 Margaret	-+ Denest						
Min SlewRate_Mask 1	V/ns	Min SlewRate_Mask	litte:	L	LPDDR4 Measureme	nt Report						
Max SlewRate_Mask 7	V/ns	Max SlewRate_Mask	Sub-T	Title:	AddCmd Bus, 2.4Gb	ps						
Max SlewRate_AC_Swing 9	V/ns	Max SlewRate_AC_Swing	Notes									
		······································	Notes									Default
				L							[Derduit
Strobe Adjustment Resolution: 0.02 UI		Pull Ti	ng Budget Gener	rate R	eport					ОК	Cance	Apply
					1							

© 2015 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence and the Cadence logo are

cādence°

2 registered trademarks and Sigrity is a trademark of Cadence Design Systems.

Generating measurement report for timing and signal quality

© 2015 Cadence Design Systems, Inc. All rights reserved.

Signal quality reported by simulating the design with channel analysis option

Case study: Simulation and measurement correlation of a DDR4 design

35 © 2015 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence and the Cadence logo are registered trademarks and Sigrity is a trademark of Cadence Design Systems.

Stimulus settings

Stimulus Definition & Data Rate: 2.133	Model Selection Gbps Clock Period: T =	0.937647 ns Bit Period: 0	.468824 ns # of Bits: 3	32
Controller Mer Bus Group/Sig	Stimulus Definition & Model S Data Rate: 2.133 Gbps Controller Memory	election Clock Period: T = 0.93764	7 ns Bit Period: 0.46	i8824 ns # of Bits: 32
DQ1	Bus Group/Signal	Receive IO Model	Status	
DQ2	🖃 lane1			
DQ3	DQ0	DQ_IN_ODT60_2133	Signal	
DQ4	DQ1	DQ_IN_ODT60_2133	Signal	
DQ5	DQ2	DQ_IN_ODT60_2133	Signal	
⊡ DQ6	DQ3	DQ_IN_ODT60_2133	Signal	
DQ7	DQ4	DQ_IN_ODT60_2133	Signal	
DQSP	DQ5	DQ_IN_ODT60_2133	Signal	
DQSN	DQ6	DQ_IN_ODT60_2133	Signal	
	DQ7	DQ_IN_ODT60_2133	Signal	
	DQS_t	DQS_IN_ODT60_2133	Timing Ref	
	DQS_C	DQS_IN_ODT60_2133	Timing Ref	

Distributed power network at controller

Power at the memory side (ripple +/- 0.02 V)

^{40 © 2015} Cadence Design Systems, Inc. All rights reserved.

cadence

Eye width measurement

Eye Width	Mean
Sim Results	412 ps
H/W Results	403 ps

Result within 5 %

cādence[®]

cādence°

44

© 2015 Cadence Design Systems, Inc. All rights reserved. 45

cādence[®]

Report generation settings

Repo	ort Generator						×
	AC and DC Logic Inpu	t Levels					
	Threshold: myThres	shold	 AC Thre 	shold (mV): 13	5 DC	Threshold (mV)	: 135
	Single-Ended Signals	(v):					
	Corner	VIH(ac) min	VIL(ac) max	VIH(dc) min	VIL(dc) max	VREF(dc)	
	Тур	0.935	0.665	0.935	0.665	0.8	
	Differential Signals (V	/):					
	Corner	VIHdiff(ac) min	VILdiff(ac)	max VIHdiff(dc) min 🛛 VILdi	ff(dc) max	
	Тур	0.27	-0.27	0.2	-0.2		
	Measurement Options						
	Waveform Location:	Pkg Pin	-	Measurement	Range: 0	-	Cyde 🔻
	Measurement Type	25					
	✓ Waveform Qu	ality 🗹 E	Eye Quality	T	ïming	🗹 De	elay
	Eye Trigger Period	d: TimingRef	👻 Eye	Aperture: Tac	/Tdc Rectangle	s 🚽 Min T	Tac Width (% of UI): 50
	Setup Derating Table:						
	Hold Derating Table:						
	Derating Table Extrapolation: None						
	Generate Report Cancel						

tDVAC variation with cycle of a DQS net

cādence

47

47 © 2015 Cadence Design Systems, Inc. All rights reserved.

tDVAC Strobe report

tDVAC	Mean	Max	Min
Sim Results		367 ps	360 ps
H/W Results	347 ps	382.7 ps	343.10 ps

Bus Type: Data, Edge Type: BothEdges, Bus Group: lane1, Timing Ref: DQS_t-DQS_c, Measurement Range: [2459.72ps, end]					
Rx Si	gnal	Min	Min	Max	
Eye Diagram	Pin	<u>tVAC_high/tDVAC_high (ps)</u>	<pre>tVAC_low/tDVAC_low (ps)</pre>	<u>Vix_rise (n</u>	
<u>DQ0</u>	C2	403.689	293.118	NA	
<u>DQ1</u>	B 7	401.138	283.602	NA	
<u>DQ2</u>	D3	403.334	278.492	NA	
<u>DQ3</u>	D7	402.287	278.533	NA	
<u>DQ4</u>	D2	402.607	290.734	NA	
<u>DQ5</u>	D8	<u>400.973</u>	287.822	NA	
<u>DQ6</u>	E3	402.034	284.53	NA	
<u>DQ7</u>	E 7	402.854	287.137	NA	
All Signals		NA	NA	NA	
DQS t-DQS c	C3, B3	367.733	360.154	<u>84.706</u>	

Slew rate variation with cycle of a DQ net

49

Slew rate report

SRIN_dIVW_Fall	Mean	Max	Min
Sim Results		-3.13 V/ns	-1.96 V/ns
H/W Results	- 2.32 V/ns	-2.81 V/ns	-2.19 V/ns

Bus Type: Data, Edge Type: BothEdges, Bus Group: lane1, Timing Ref: DQS_t-DQS_c, Measurement Rang						
Rx Sig	mal	[Min, Max] SlewRate TimingRef	[Min, Max] SlewRate Setup	[Min, Max]		
Waveform	Pin	(V/ns)	(V/ns)	<u>SlewRate_Hold (V/ns)</u>		
<u>DQ0</u>	C2	[5.40253, 6.20775]	[2.02237 2.92797]	[2.3287 3.13065]	1	
<u>DQ1</u>	B 7	[5.40253, 6.20775]	[2.06105, 2.83201]	[2.21683, 2.93704]	:	
<u>DQ2</u>	D3	[5.40253, 6.20775]	[2.12613, 2.71579]	1.96773, .86994]	:	
<u>DQ3</u>	D7	[5.40253, 6.20775]	[2.0459, 2.70162]	[2.1333, 2.90077]	:	
<u>DQ4</u>	D2	[5.40253, 6.20775]	[1.97432, 2.88566]	[2.50374, 2.97561]	:	
<u>DQ5</u>	D8	[5.40253, 6.20775]	1.92858 2.82142]	[2.46565, 2.91835]	:	
DQ6	E3	[5.40253, 6.20775]	[2.13529, 2.66773]	[2.11598, 2.88237]	:	
<u>DQ7</u>	E 7	[5.40253, 6.20775]	[2.19001, 2.71038]	[2.24738, 2.8795]	:	

SRIN_dIVW_Rise	Mean	Max	Min
Sim Results		2.92 V/ns	1.92 V/ns
H/W Results	1.86 V/ns	2.79 V/ns	1.8 V/ns

50 **c**adence[°]

50 © 2015 Cadence Design Systems, Inc. All rights reserved.

Summary

cādence°

51 © 2015 Cadence Design Systems, Inc. All rights reserved.

Conclusion

- DDR4 and LPDDR4 technologies pose new challenges to parallel bus design and analysis
 - Serial link design methods introduced to the design specification
 - Lower power assumption requires dedicated margin tuning
- Combination of power-aware SI simulation and channel simulation is the only way to support these new technologies
- Cadence Sigrity[™] technology provides comprehensive system level SI/PI solutions for core, package, and PCB
 - Unique methodology of power-aware simulation for core and parallel bus system
 - Behavioral model (Chip and core power) generation and simulation
 - Package and board model extraction
 - Integration of patented channel simulation approach in parallel bus analysis flow

cādence[®]

© 2015 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and Allegro are registered trademarks and Sigrity, SystemSI, and XtractIM are trademarks of Cadence Design Systems. All other trademarks are the property of their respective owners.