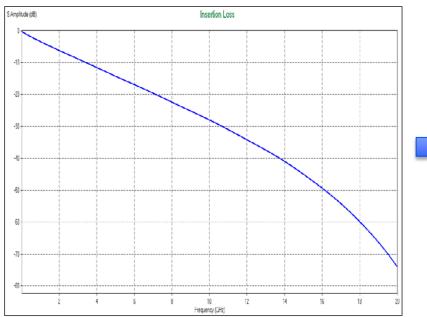
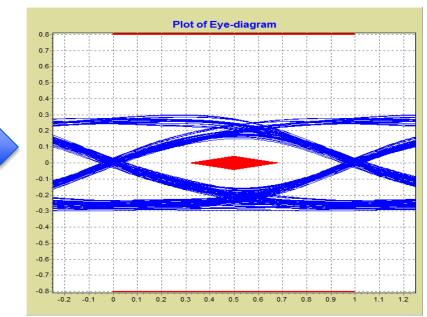


Channel Based Methods for Signal Integrity Evaluation

COMPAL ELECTRONICS, INC. Taipei Server Business Aug 13, 2013


- Evolution of Signal Integrity Evaluation
- Review of Industrial Specification
- Foundation of Channel Based Methods
- Impact of Channel Extraction Method
- Case Study
- Conclusion
- Reference

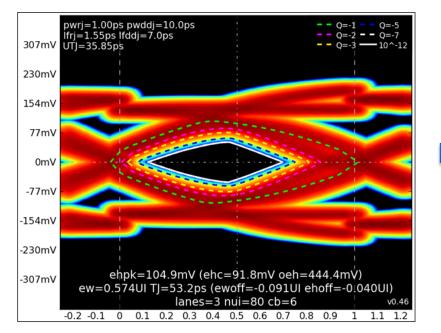
Evolution of Signal Integrity Evaluation (1/2)



Loss evaluation

1.No reflection and crosstalk effect 2.Not visualizing evaluation method

Eye-diagram evaluation


1.Probability factor is not taken into account 2.Not every equalizer effect could be considered

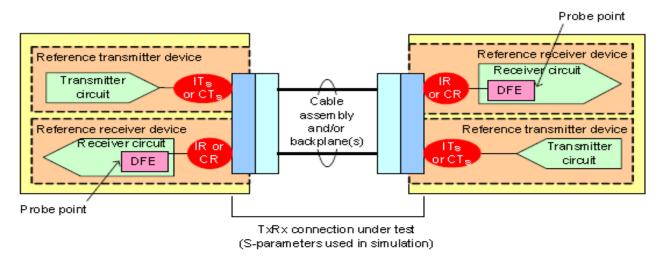
Evolution of Signal Integrity Evaluation (2/2)

Statistical Eye-contour evaluation

It seems good enough. But,...

New evaluation method

Multi-level signaling?


Multi-path crosstalk?

Error Correction Code effect?

Review of Industrial Specification (1/5)

SAS6G Passive TxRx Connection Specification

Figure 98 — Example passive TxRx connection compliance testing for trained 1.5 Gbps, 3 Gbps, and 6 Gbps

Table 27 defines the required passive TxRx connection characteristics.

Characteristic	Units	6 Gbps					
Minimum voltage a	mV(P-P)	84					
Maximum TJ ^a	UI	0.64					
reference transmitter device and the reference ro BER of 10 ⁻¹⁵ inside the reference receiver devic standard does not define values for trained 3 Gb	^a As reported by simulation of the passive TxRx connection S-parameters with the reference transmitter device and the reference receiver device. Values are reported at a BER of 10 ⁻¹⁵ inside the reference receiver device after equalization at 6 Gbps. This standard does not define values for trained 3 Gbps and 1.5 Gbps. Passive TxRx connections that comply with the 6 Gbps characteristics are expected to operate correctly						

Table 27 — Passive TxRx connection characteristics for trained 6 Gbps

In general, most specification defines requirement of eye-diagram as table above

Review of Industrial Specification (2/5)

SAS12G Passive TxRx Connection Specification

T10/BSR INCITS 519 Revision 05b

22 May 2013

labels beginning by <usage> indicate reference transfer functions. <usage> represents a prefix that is set according to the selected usage model (see D.2).

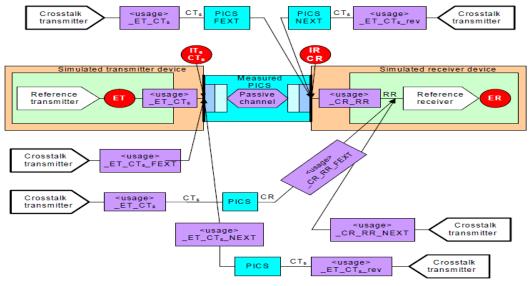


Figure 100 — Passive TxRx connection segment between CT_s and CR or IT_s and IR end to end simulation schematic for trained 12 Gbps

Table 28 — Passive Table 28	xRx connection charateristics	for trained 12 Gbps at ET and ER
-----------------------------	-------------------------------	----------------------------------

Characteristic	Units	Minimum	Maximum	Compliance point
Coefficient 1 (i.e., C1) a b c	V/V	-0.15	0	ET
VMA ^d e	mV(P-P)	80	-	ET
Coefficient 3 (i.e., C3) a b f	V/V	-0.3	0	ET
Reference pulse response cursor peak-to-peak amplitude ^g	mV(P-P)	85	-	ER
Vertical eye opening to reference pulse response cursor ratio $\ensuremath{^{h\ i}}$	%	45	-	ER
DFE coefficient amplitude to reference pulse response cursor ratio ^j	%	-50	50	ER

1.Where is jitter requirement?

2.Why using these criteria?

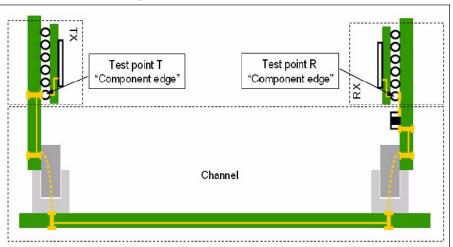
Review of Industrial Specification (3/5)

CEI-6G and 11G LR Specification Defined in OIF

Table 9-1. CEI-11G-LR Receiver Equalization Output Eye Mask

Parameter	Symbol	Max	Units
Eye mask	R_X1	0.2625	UI
Eye mask	R_Y1	50	mV
Correlated Bounded High Probability Jitter, pre-equalizer	R_CBHPJ	0.40	Ulpp
Correlated Bounded High Probability Jitter, post-equalizer	R_CBHPJ	0.10	Ulpp
Uncorrelated Bounded High Probability Jitter	R_UBHPJ	0.15	Ulpp
Uncorrelated Unbounded Gaussian Jitter	R_UUGJ	0.15	Ulpp
Quality of signal (SNR in real number)	Q	7.94	

Table 7-10. CEI-6G-LR High Frequency Jitter Budget


	Uncorrela	ted Jitter	Correla	ted Jitter		Total J	itter			
CEI-6G-LR	Unbounded Gaussian	High Probability	Bounded Gaussian	Bounded High Probability		Sinusoidal	Bounded High Probability	Total	Am	olitude
Abbreviation	UUGJ	UHPJ	CBGJ	CBHPJ	GJ	SJ	HPJ	TJ	k	
Unit	Ulpp	Ulpp	Ulpp	Ulpp	Ulpp	Ulpp	Ulpp	Ulpp		mVppd
Tran smitter	0.150	0.150			0.150		0.150	0.300		800.0
Channel			0.230	0.525						
Receiver Input	0.150	0.150	0.230	0.525	0.275		0.675	0.950	0.00	0.0 See 2
Equalizer				-0.350 See 1						
Post Equalization	0.150	0.150	0.230	0.175	0.275		0.325	0.60	0.20	100.0
DFE Penalties				0.100					-0.08	-45.0
Clock + Sampler	0.150	0.100		0.100						-45.0
Budget	0.212	0.250	0.230	0.375	0.313	0.050	0.625	0.988	0.06	10.0
	NOTES: 1. Due to receiver equalization, it reduces the ISI as seen inside the receiver. Thus this number is negative. 2. It is assumed that the grapic closed at the receiver hence receiver equalization is required as indicated below.									

It is assumed that the eye is closed at the receiver, hence receiver equalization is required as indicated below.

Review of Industrial Specification (4/5)

CEI-25G LR Specification Defined in OIF

Figure 11-1.CEI-25G-LR Reference Model

Table 11-12. Receiver Electrical Input Specifications

Characteristic	Symbol	Condition	MIN.	TYP.	MAX.	UNIT	ĺ
Baud rate	R_Baud		19.90		25.80	GSym/s	ĺ
Input Differential Voltage	R_Vdiff	Note 1			1200	mVppd	ĺ_
Differential Input Impedance	R_Rdin		80	100	120	Ω	i I
Input Impedance Mismatch	R_Rm				10	%	İs
Differential Input Return Loss	R_SDD11	See 11.3.2.3					iL-
Common Mode Innut Deturn Loop	D. 00011	Below 10 GHz			-6	dB	s
Common Mode Input Return Loss	R_SCC11	10GHz to baud rate			-4		N
Input Common Mode Voltage	R_Vcm	Load Type 0 See Note 2	-200		1800	m∨	
NATEO	I	1					ŕ

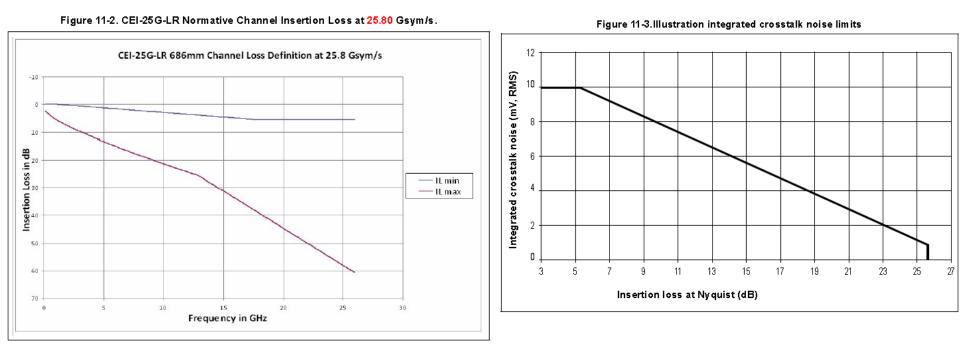
NOTES:

 The receiver shall have a differential input voltage range sufficient to accept a signal produced at point R by the combined transmitter and channel. The channel response shall include the worst case effects of the return losses at the transmitter and receiver.

2. Load Type 0 with min. T_Vdiff, AC-Coupling or floating load. For floating load, input resistance shall be≥1kΩ

Table 11-13. Receiver Input Jitter Specification

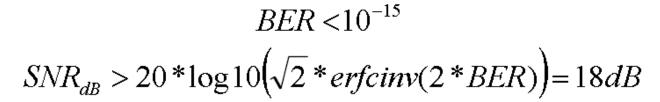
Characteristic	Symbol	Condition	MIN.	TYP.	MAX.	UNIT
Sinusoidal Jitter, Maximum	R_SJ-max	See Section 2.5.4, note 1			5	Ulpp
Sinusoidal Jitter, High Frequency	R_SJ-hf	See Section 2.5.4, note 1			0.05	Ulpp
NOTES:						

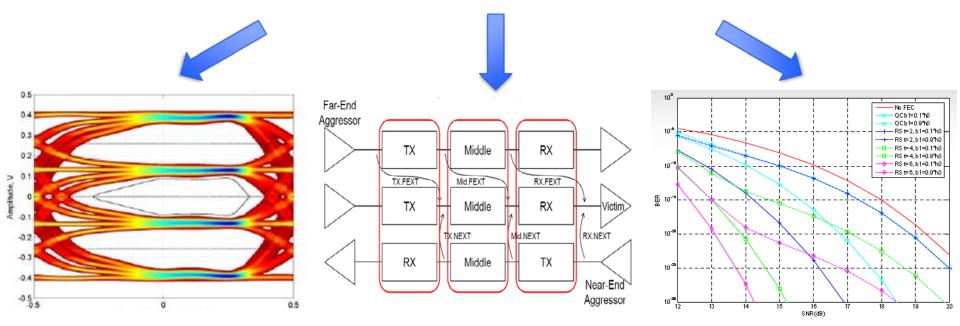

 The Receiver shall tolerate the sum of these jitter contributions: Total transmitter jitter from Table 11-7;Sinusoidal jitter as defined in Table 11-13;The effects of a channel compliant to the Channel Characteristics (Section 11.2.6).

No Eye-diagram requirement for 25G

Review of Industrial Specification (5/5)

CEI-25G Channel Compliance Requirement Defined in OIF




$$\begin{split} ILD \geq ILD_{min} = \begin{cases} -1.0 - 12.0(f/f_b) & f_{ILmin} \leq f < f_b/4 \\ -4.0 & f_b/4 \leq f \leq (3/4)f_{ILmax} \end{cases} \\ ILD \leq ILD_{max} = \begin{cases} 1.0 + 12.0(f/f_b) & f_{ILmin} \leq f < f_b/4 \\ 4.0 & f_b/4 \leq f \leq (3/4)f_{ILmax} \end{cases} \end{split}$$

Short Conclusion: 1. Industrial specs starting to change focus of requirement2. Channel discontinuity and crosstalk constraints become important in new specification

SNR is widely used metric in communication field

Multi-level signaling evaluation become practicable

Multi-path crosstalk could be simplified

Effect of Error Correction Code could be considered by coding gain

Illustration of different methods

Methods adopted by SAS_Chan2L and CCT

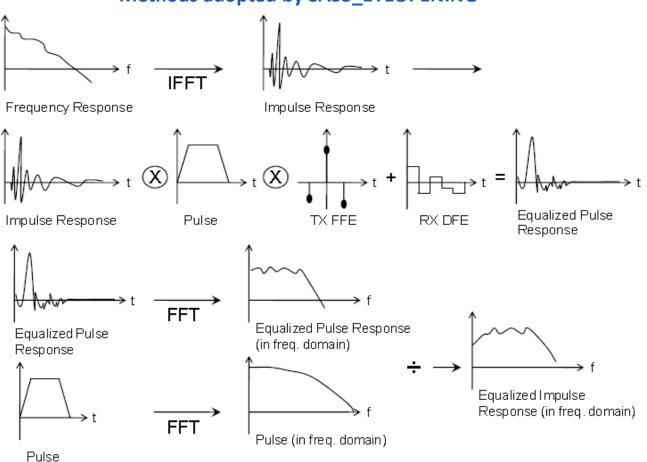
$$SNR = 20 \cdot \log \left(\frac{S_{avail_channel} * Si_{eq_gain} * Si_{Jitter_penalty}}{\sqrt{\sigma_{icn}^2 + \sigma_{ii\ln}^2 + \sigma_{Si_noise}}} \right)$$

Noise calculation formula Insertion loss calculation $\frac{2 \cdot \Delta f \cdot \sum_{n} PWF(f_{n}) \cdot Quantity^{2}}{F2 - F1}$ Fng σ = 0 dB dB **PWF** Loss @ Fna **Relative Spectral Density** 0.8 New 0.6 ILD IL fit 0.4 0.2 0

Drawback: Equalization effect didn't take into account

0

-


1/UI

3

4

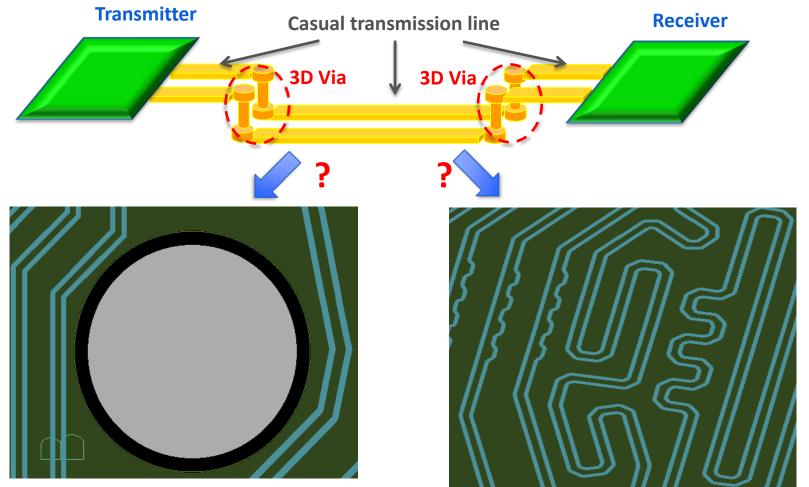
Illustration of different methods

Methods adopted by SAS3_EYEOPENING

With equalized impulse, worst case signal amplitude and crosstalk noise could be easily computed.

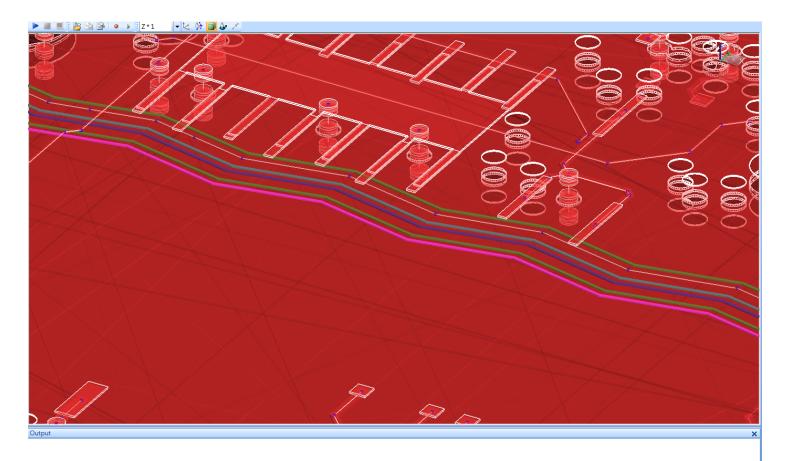
Foundation of Channel Based Methods (4/4)

Illustration of different methods

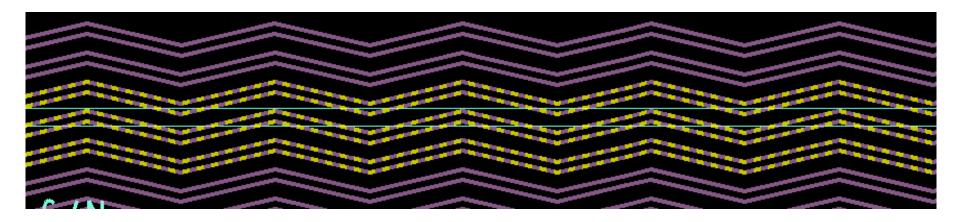

Flow of COM Channel s-parameters Intrinsic Channel SBR – single bit response aka pulse response Filters PDF - Probability Density Function CDF - Cumulative Distribution Function CTLE - Continuous Time Linear Equalizer Apply Tx and Rx package Calculation of equalized signal amplitude and noise bandwidth loss and filter reflection Grid sweep Determine Tx FF3 and CTLE Apply Tx -TX FFE & CTLE Create settings and max available FFE, CTLE SBR Ea SBR(t) Ш Equalized SBR signal for best SBR ISI SNR filter RMS 1. Determine eq. settings and Available SX. RMS available signal using THRU signal channel nDFE⁺UI Channel Eq. settings Operating Тс Margin Apply Tx -Create Ref Rx FFE, CTLE SBR Eq filter Peak Interference 2. Determine peak interference for Thru, FEXT, NEXT channels Interference CDF PDF's Signals (t) Jitter and voltage uncertainty PDF's

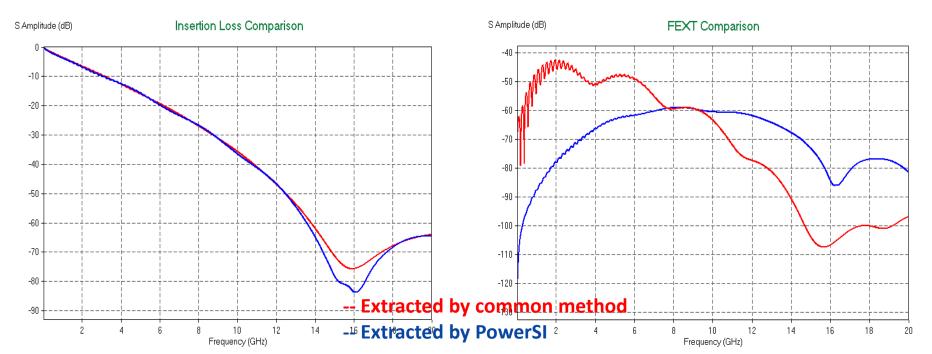
Methods adopted by COM (Channel Operation Margin)

With equalized signal response and noise CDF, worst case operation margin could be easily computed.


Common method: Casual transmission line and Via extracted by 3D field solver.
While, how about following cases?

It would consume huge computation time and resource to solve whole channel linkages by 3D field solver.


 A quick solver with sufficient accuracy is necessary to take detail channel effect into account



Case Study (1/9)

• Case1: Highly parallel differential pairs

Case Study (2/9)

• Case1: Highly parallel differential pairs

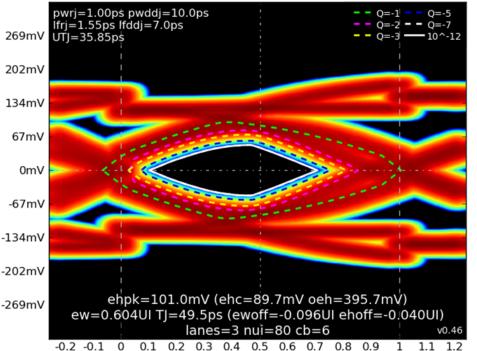
Extraction Method	IL @ Nyquist	IL rms noise	Crosstalk rms noise	SNR
Common	12.7dB	18.3mV	6.7mV	27.5dB
PowerSI	12.6dB	22.8mV	0.4mV	25.1dB

SAS Chan2l

SAS3_EYEOPENING

Extraction Method	Main Cursor	Relative Opening (Crosstalk included)	SNR	Relative Opening (Crosstalk excluded)
Common	120.8mVppd	83.4% => 100.7mVppd	15.596dB	91.1%
PowerSI	112.3mVppd	86.3% => 96.9mVppd	17.655dB	87.6%

COM


Extraction Method	IL @ Nyquist	Vpeak after equalizer	Peak channel noise	SNR	Peak noise	СОМ	Vpeak - noise
Common	14.026dB	136.7mVppd	21.2mV	16.188dB	39.1mV	10.872dB	97.6mVppd
PowerSI	14.801dB	89.6mVppd	31.5mV	9.080dB	42.1mV	6.561dB	47.5mVppd

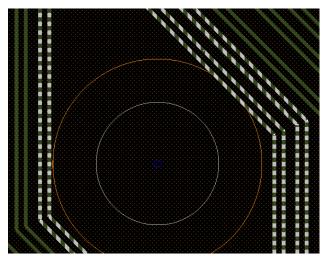
Case Study (3/9)

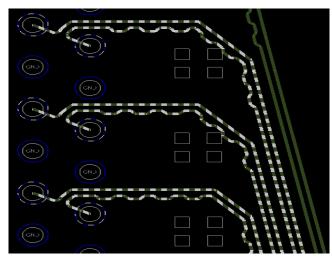
Examination by Seasim

Simulation results with channel extracted by common method

Minimum eye-height is close to COM and SAS3_EYEOPENING results

Simulation results with channel extracted by PowerSI


Minimum eye-height is far larger than COM results and smaller than SAS3_EYEOPENING results


S Amplitude (dB)

Case Study (4/9)

• Case2: Partially non-parallel differential pairs



Insertion Loss Comparison

S Amplitude (dB)

FEXT Comparison

• Case2: Partially non-parallel differential pairs

Extraction Method	IL @ Nyquist	IL rms noise	Crosstalk rms noise	SNR
Common	9.2dB	17.8mV	4.9mV	30.3dB
PowerSI	8.5dB	25.3mV	1.2mV	26.8dB

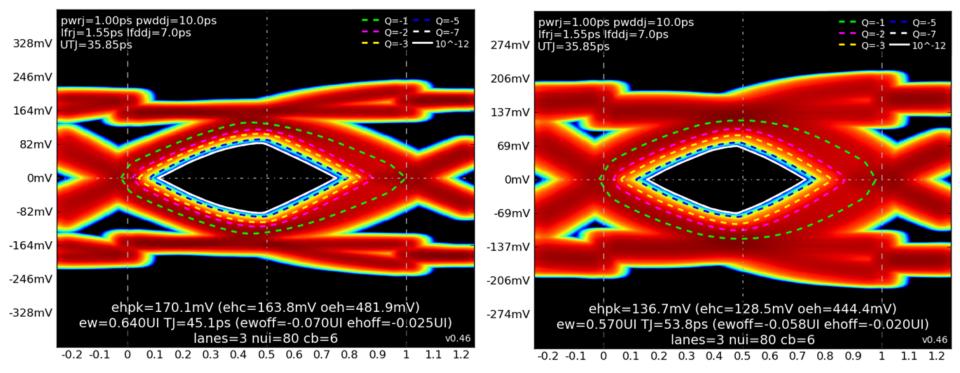
SAS_Chan2L

SAS3_EYEOPENING

Extraction Method	Main Cursor	Relative Opening (Crosstalk included)	SNR	Relative Opening (Crosstalk excluded)
Common	188.2mVppd	93% => 175.0mVppd	23.098dB	98%
PowerSI	186.9mVppd	94.9% => 177.4mVppd	25.849dB	96.3%

COM

Extraction Method	IL @ Nyquist	Vpeak after equalizer	Peak channel noise	SNR	Peak noise	СОМ	Vpeak - noise
Common	10.1073dB	219.91mVppd	29.3mV	17.402dB	58.9mV	11.443dB	161.0mVppd
PowerSI	10.0318dB	203.02mVppd	39mV	14.33dB	66.4mV	9.707dB	136.6mVppd

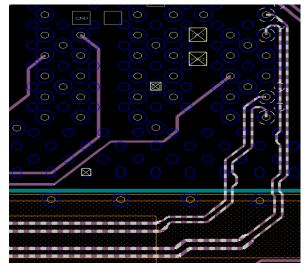


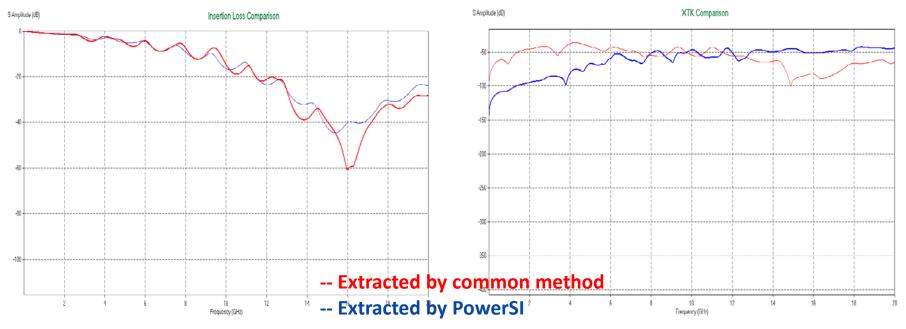
Case Study (6/9)

Examination by Seasim

Simulation results with channel extracted by common method

Simulation results with channel extracted by PowerSI


Both minimum eye-height simulation results are very close to those of COM



Case Study (7/9)

• Case3: Mostly non-parallel differential pairs with layer transition

Case Study (8/9)

• Case3: Mostly non-parallel differential pairs with layer transition

Extraction Method	IL @ Nyquist	IL rms noise	Crosstalk rms noise	SNR
Common	3.4dB	67.5mV	6.3mV	22.4dB
PowerSI	3.2dB	95.6mV	0.1mV	19.1dB

SAS_Chan2L

SAS3_EYEOPENING

Extraction Method	Main Cursor	Relative Opening (Crosstalk included)	SNR	Relative Opening (Crosstalk excluded)
Common	554.2mVppd	78.5% => 435.0mVppd	13.351dB	81.1%
PowerSI	539.8mVppd	80% => 431.8mVppd	13.979dB	80.7%

COM

Extraction Method	IL @ Nyquist	Vpeak after equalizer	Peak channel noise	SNR	Peak noise	СОМ	Vpeak - noise
Common	3.6766dB	560.39mVppd	172.5mV	10.234dB	253.4mV	6.8937dB	307.0mVppd
PowerSI	4.0717dB	522.22mVppd	203.5mV	8.186dB	278.9mV	5.448dB	243.3mVppd

Case Study (9/9)

• Higher data rate results

COM of case 1 with 12Gbps

Extraction Method	IL @ Nyquist	Vpeak after equalizer	Peak channel noise	SNR	Peak noise	СОМ
Common	21.61dB	38.28mVppd	7.5mV	14.158dB	13.4mV	6.1164dB
PowerSI	22.97dB	-20.57mVppd	58.1mV	N/A	N/A	N/A

COM of case 1 with 25Gbps

Extraction Method	IL @ Nyquist	Vpeak after equalizer	Peak channel noise	SNR	Peak noise	СОМ
Common	47.26dB	6.64mVppd	0.9mV	17.359dB	2mV	10.4259dB
PowerSI	50.84dB	-6.04mVppd	21.9mV	N/A	N/A	N/A

Long Via stub channel extracted by common method can operate with 12Gbps data rate?

Conclusions

- For upcoming industrial specification of very high speed signals, channel discontinuity and crosstalk become important.
- Channel based methods are ready for signal integrity evaluation of complex signal transmission mechanism.
- A quick solver with sufficient accuracy is necessary for detail channel effect modeling of very high speed signals.
- As channel discontinuity and crosstalk dominating, accuracy of channel based methods would be critical issue.
- Though, channel based methods couldn't take interaction between chip buffer and channel into account.

- [1] Working Draft American National Standard Information Technology Serial Attached SCSI -3 (SAS-3)
- [2] Enhanced Equalization and Forward Correction Coding Technologies for 25+Gb/s Serial Link System
- [3] SAS3 Channel Spec Weeding Proposal
- [4] Comparison of SAS3_EYEOPENING with SAS_Chan2L
- [5] Channel Operating Margin (COM): Evolution of Channel Specifications for 25 Gbps and Beyond
- [6] Common Electrical I/O (CEI) Electrical and Jitter Interoperability agreements for 6G+ bps, 11G+ bps and 25G+ bps I/O