PCI SIG

Bridging the Measurement and Simulation Gap

Sarah Boen Marketing Manager Tektronix

- Synergy between simulation and lab based measurements
- IBIS-AMI overview
- Simulation and measurement correlation results
- Impact of channel on jitter and noise measurements
- Summary

Simulation vs. Measurement

- Traditionally two separate worlds
 - ✓ Simulate from the office and measure in the lab
- Today measurement "probe points" are not accessible
 - Equalization takes place inside the chip for multi-gigabit devices
 - Measurement equipment must simulate the equalization to show if the data can be recovered
- Does it make sense to be simulating using different techniques?
 - ✓ NO!

SIG

Office

Lab

Considerations for Correlation

- Lab measurements have artifacts not typically present in simulation
 - Cables and connectors
 - ✓ Test equipment scopes, probes
- Simulation must model these or they must be removed from measurements
 - Models for simulation available from test vendor or can be measured directly
- Receiver models can impact results
 - ✓ IBIS-AMI provides a standard method for RX Equalization

AMI > Algorithmic Modeling Interface

- Extension made to IBIS in 2007
- Enables software-based, algorithmic models to work together with traditional IBIS circuit models
- Enables SerDes equalization algorithms to be modeled and used during channel simulation
- IBIS-AMI enables plug-and-play simulation compatibility between SerDes models from different suppliers, in a standard commercial EDA format

IBIS-AMI Model Sub-Components

APIs in IBIS-AMI Modeling

•

•

SIG

Measurement

PCI-SIG Developers Conference

Transmitter-BERT Output

- Simulation TX modeled to match measurement TX
- 50 ohm output impedance
- Tune output capacitance to match 23ps rise time of BERT, 10% - 90%
- 800mV diff peak-topeak
- 16Gbps data rate
- No TX EQ
- Common PCIE compliance pattern for BERT and sim

TX PRIMA

Channel – Measured S-Parameter

Cable +
 ISI board
 + cable

 20dB insertion loss at about 8GHz

Receiver- Scope Input With Common AMI Model

- 50 ohm input impedance
- Automatic gain control
- CTLE per PCIE spec
- 5 tap DFE

 $\ensuremath{\textcircled{\sc 0}}$ 2015 Content is the copyrighted material of either Cadence Design Systems, Inc. or Tektronix, Inc. Used by PCI-SIG under license.

Scope recorded 5M samples at 100G samples/sec with UI of 62.5ps

PCI-SIG Developers Conference

Swept CTLE Setting to Determine Best One

Sweep Manad

Settings F

Current Iteration

✓ 21✓ 22

✓ 23✓ 24

✓ 25
 ✓ 11
 ✓ 10

V 12

✓ 9✓ 14

✓ 13
 ✓ 15
 ✓ 8

✓ 16
✓ 17
✓ 7
✓ 18
✓ 19
✓ 6
✓ 5

Sorted by "NJN"

Selected result with minimum jitter

Set dbl=21 for sim and measurement

esults								
History	1						Evert	Show Pegult
r listor y	<u> </u>						Export	Show Result
	Folder		Eye Contour ∇	Eye Contour Jit	Eye Contour NJN	RX_PRIMARY>amirx_pr	BER_Eye Height (mV)	BER_Eye Width (UI)
	result/me	dChan	197	0.5	0.90	20	141	0.33
	result\me	dChan	187	0.51	0.90	21		
	result\me	dChan	183	0.51	0.91	22		
	result\me	dChan	172	0.54	0.91	23		
	result\me	dChan	172	0.54	0.92	24		
	result\me	dChan	167	0.54	0.92	25		
	result\me	dChan	85	0.23	0.82	11		
	result\me	dChan	84	0.26	0.83	10		
	result\me	dChan	84	0.28	0.83	12		
	result\me	dChan	82	0.29	0.85	9		
	result\me	dChan	81	0.37	0.84	14		
	result\me	dChan	80	0.34	0.84	13		
	result\me	dChan	77	0.42	0.87	15		
	result\me	dChan	73	0.39	0.89	8		
	result\medChan		72	0.45	0.88	16		
	result\me	dChan	72	0.46	0.88	17		
	result\medChan		70	0.42	0.90	7		
	result\medChan		65	0.48	0.89	18		
	result\medChan		65	0.48	0.90	19		
	result\medChan		64	0.46	0.92	6		
			56	0.51	0.94	5		
		an	42	0.64	0.96	4		
1		in	0	1	1	1		
		in	0	1	1	2		
		an	0	1	1	3		
rea								
							▲ III	•
		e res	ults of the checked it	erations, or double d	show the results.			
>	0							
							ОКС	Apply

Obtain Measured Rj and Rn

- Run BERT directly into scope
- Measure Rj and Rn at 0.64%UI and 7.2mV RMS, respectively
- Inject these values into channel simulation

Set CTLE Value (dbl=21) and Run

PCI-SIG Developers Conference

Simulation Bathtub Report

LBER-8

SIG

- ✓ 0.35UI and 130mV
- LBER-10
 - ✓ 0.31UI and 114mV
- LBER-12
 - ✓ 0.28UI and 100mV

BER Measurements:

LBER	Eye Width(UI)
-16	0.23
-15	0.24
-14	0.25
-13	0.27
-12	0.28
-11	0.30
-10	0.31
-9	0.33
-8	0.35
-7	0.37
-6	0.39
-5	0.42
-4	0.46
-3	0.55

mV BER Measurements:

LBER	Eye	Height(mV)
-16	76	
-15	81	
-14	87	
-13	93	
-12	100	
-11	107	
-10	114	
-9	122	
-8	130	
-7	138	
-6	148	
-5	161	
-4	177	
-3	197	

 $\textcircled{\mbox{$\odot$}}$ 2015 Content is the copyrighted material of either Cadence Design Systems, Inc. or Tektronix, Inc. Used by PCI-SIG under license.

Measurement Results

RX after EQ

PCI

SIG

Description	Mean	
TJ@BER1, Tp4 R4	47.131ps	
TN@BER1, Tp4 R4	257.37mV	
Width1, Tp4 R4	31.731ps	
Height1, Tp4 R4	143.50mV	
Width@BER 12, Tp4 R4	15.368ps	
Height@BER 12, Tp4 R4	101.54mV	
Rise Time1, Tp4 R4	133.53ps	
Fall Time1, Tp4 R4	154.71ps	
Width@BER2, Tp4 R4	21.915ps	
Height@BER 8, Tp4 R4	136.63mV	
Width@BER 10, Tp4 R4	18.410ps	
Height@BER 10, Tp4 R4	119.56mV	Γ

PCI-SIG Developers Conference

Compare Simulation Results vs. Measurement

- Width correlated from perfect match at LBER -8 to 3%UI difference at LBER -12
- Height ran from 4.9% difference at LBER -8 to 1.5% difference at LBER -12
- Overall composite match at target LBER -12 within 2.3%
- Overall composite match across all 6 metrics within 2.7%

Further Measurement Considerations

- Measurements were done at the far end of the channel
- Channel effects on signal slew rate can result in AM-to-PM and PM-to-AM conversion
- These effects can be measured

Channel Impact on RN/RJ

We can separate the noise contribution of jitter for diagnostic purposes by breaking RJ into RJ(v) and RJ(h)

Consider: an "ideal" edge in a pattern actually has two impairments:

- Jitter(h) (see the blue trace)
- and Noise (note that both of Jitter and Noise result in jitter on edge)

The Combined response (bottom right) includes the jitter caused by noise

- Since jitter is defined as a shift in an edge's time relative to its expected position, it is easy to think of jitter as being <u>caused</u> by horizontal (chronological) displacement.
- Note that the displaced edge (green) has not moved vertically in this example.

- Consider a burst of voltage noise (right) that displaces a waveform vertically.
 - In this case, the displaced edge (green) has not moved horizontally.
- The jitter as measured at the chosen reference voltage is identical in these cases!
 - So, why should we care?

- Two fundamentally different effects have caused the same amount of jitter, and either one will close the eye by the same amount <u>at this reference voltage</u>, but:
 - They will have different effects at other voltages where the slew rate is different.
 - Their differences give insight to root cause

Noise-to-Jitter (AM-to-PM)

 Since waveform transitions are never instantaneous, the slope (slew rate) of the edge acts as a gain constant that controls how effectively noise is converted to "observed jitter".

 An analogous effect occurs when voltage is measured at the center of the bit interval: If the slew rate is not zero, then jitter will cause PM-to-AM conversion and appear as noise!

Horizontal and Vertical Components of Random Jitter

We can think of RJ as being composed of two components.

Horizontally induced: RJ(h)

✓ Vertically induced: RJ(v)

 Since these two components are uncorrelated with each other, they add in the RSS sense:

$$RJ = \sqrt{RJ(h)^2 + RJ(v)^2}$$

• Similarly, PJ can be decomposed into PJ(h) and PJ(v) based on root cause

Horizontal and Vertical Components of Random Noise

- We measure noise at a reference point in the bit interval (usually 50%)
- If slew rate isn't zero, jitter (horizontal displacement) causes observed noise

- So as with RJ, RN can be decomposed into components:
 - Horizontally induced: RN(h)
 - Vertically induced: RN(v)
- Similarly, PN can be decomposed into PN(h) and PN(v) based on root cause

PCI-SIG Developers Conference

- Simulation / Measurement correlation requires accurate modeling of TX/RX/Channel
 - ✓ Amplitude, Rise Time, Jitter and Noise profiles need to be modeled
- IBIS-AMI models enable accurate prediction of signaling inside the device after adaptive EQ
 - ✓ Design space exploration in early design phase (Design Level)
 - ✓ Final design signoff before going to manufacturing (System Level)
 - ✓ Final verification in the lab using measurement equipment
- Understanding and decomposing the effects conversion of jitter to noise and vice versa provides insight into the root cause of eye closure
- Cadence and Tektronix are bridging the gap between simulation and lab measurement
 - ✓ Make Tektronix MSO/DPO70000 Series and Cadence[®] Sigrity[™] SystemSI[™] tool your lab measurement and simulation solutions

Thank you for attending the PCI-SIG Developers Conference 2015

For more information, please go to <u>www.pcisig.com</u>

PCI-SIG Developers Conference

PCI SIG Presentation Title

Speaker Title Company

