Application and Extraction of IC Package Electrical Models for Support of Power and Signal Integrity Analysis

Om P. Mandhana, Jon Burnett

Freescale Semiconductor, Austin, TX

Sam Chitwood, Brad Brim Sigrity Inc, Santa Clara, CA

Design Automation Conference, User Track – Poster Session, July 29, 2009

1

Focus:

- Understand how extraction conditions, model type and electrical analysis application dictate requirements for IC package models.
- Sigrity's package extraction tool XtractIM[®] is applied.
- We examine
 - -- extraction frequency for 1-segment RLCK model
 - -- bandwidth of data upon which model is based
 - (DC, low frequency, broadband circuit parameters)
 - -- type and bandwidth of model

(lumped to fully distributed)

-- edge rate of the switching signals

(effective bandwidth of signals)

-- effects of above choices on PI-SI simulation of noise in high-speed package systems

Single-segment RLCK Models

Bandwidth

- -- net length < 10% wavelength
- -- plane size < 15% to 20% of first resonance (*without decaps*)

Estimated reliably by considering length of longest signal net.

Extraction

- -- DC data: (a) split DC inductance to form symmetric T-circuit
- -- AC data: (b) closed form equation fit to single frequency point data (c) optimize to broadband data
- AC single-frequency extraction
 - -- any frequency (F_0) *in this bandwidth* can be applied *(including DC)*
 - -- R increases with F_0
 - -- L decreases initially with F_0 , then increases with skin loss
 - -- C insensitive to F_0

AC multi-frequency extraction

-- maximum frequency should be in this bandwidth

Electrical Package Model Extraction

Traditional Approach

Optimized Broadband RLCK Model: DC to 2 GHz

Single-segment RLCK Model vs. Extraction Frequency

Broadband Impedance and Extracted Loop Inductance

Core Noise Voltage for Pulsed Core Current Pav = 25W, V= 1.5 V, f = 1.5 GHz, Cdie = 80 nF, Rg = 4 mOhm

Design Automation Conference, User Track – Poster Session, July 29, 2009

8

SSN at Load with 14-of-16 DDR Signals Switched

 F_{switch} = 400 MHz , T_{rise} = T_{fall} = 100 ps with

Eye Diagram at the Load F_{switch} = 400 MHz , T_{rise} = T_{fall} = 100 ps

Eye Diagram at the Load F_{switch} = 400 MHz , T_{rise} = T_{fall} = 100 ps

Model Type: None 1-segment broadband, 2GHz 3-segment broadband, 2GHz

- -- Package model effects are quite dramatic
- -- Similar eye openings for each broadband model
- -- Overshoot/Undershoot and ringback are quite different
- -- Similar jitter for each broadband model

Conclusions:

- -- System noise performance differs for various types of package models and the conditions under which they are extracted
 - -- Loop inductance, AC resistance, voltage droop, power bounce, eye diagrams and jitter are used as figure of merits for noise performance evaluation
 - -- Broadband data based, multi-segment models predict more realistic SI-PI performance with significant differences for DC single-segment models
- -- Extraction frequency affects models and SI-PI performance as expected
 - -- RLC values vary as intuitively expected
 - -- RLC values affect signal switching as expected and also affect power noise as might not be expected
 - -- Multi-segment broadband based RLCK models correspond best with full-wave S-parameter SI-PI performance predictions
- -- Lessons learned for system-level modeling and design
 - -- select appropriate package model type for signal bandwidths
 - -- extract package models with adequate bandwidth
 - -- proper models enable efficiency of iterative simulation-based design improvements of for high performance processor and ASIC packages