Accurate Modelling of PCIe® 3.0 Analog Buffers

PCI

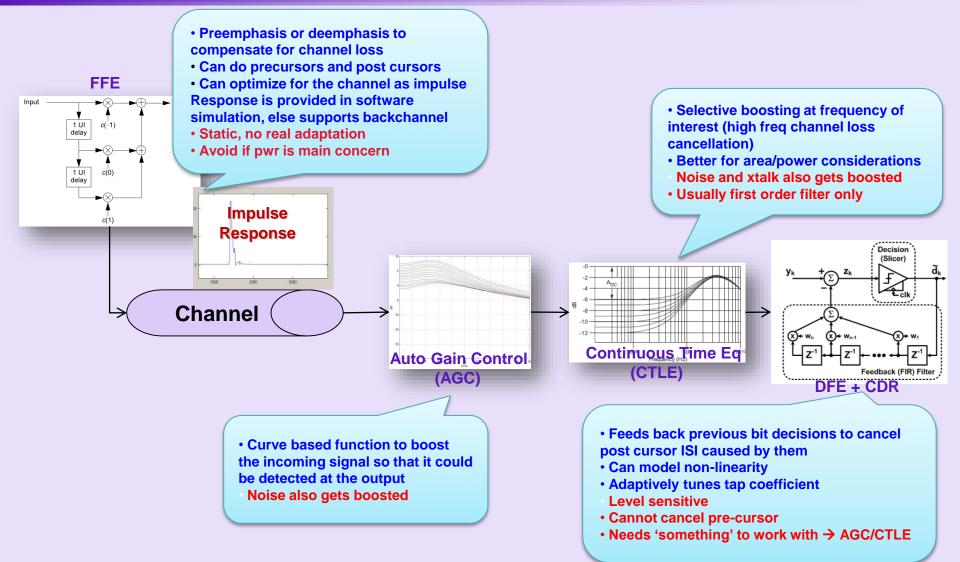
Shivani Sharma Design Engineer II Cadence Design Systems

© 2015 Cadence Design Systems, Inc. All rights reserved. Used by PCI-SIG under license.

Presentation Disclaimer: All opinions, judgments, recommendations, etc. that are presented herein are the opinions of the presenter of the material and do not necessarily reflect the opinions of the PCI-SIG[®].

- Problem Statement
- Overview of IBIS-AMI Modeling
- Accurate Modeling of PCIe[®] SerDes IO for 16Gbps or Higher Speeds
 - Using Parameterized AMI Blocks
 - ✓Using Virtual Reference Design (VRD) Flow for Quick Sign-off
- Conclusion

- Problem Statement
- Overview of IBIS-AMI Modeling
- Accurate Modeling of PCIe SerDes IO for 16Gbps or Higher Speeds
 - Using Parameterized AMI Blocks
 - ✓ Using Virtual Reference Design (VRD) Flow for Quick Sign-off
- Conclusion

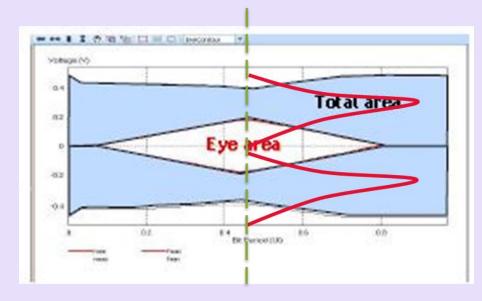


Problem Statement

- PCIe 3.0 and other current and future high speed protocols require complex equalization schemes to open the eye at the receiver sampler
- These equalizers (AGC, CTE, DFE, etc.) interact with each other during adaptation
- Managing this sequence of events can be challenging
- Correlation is even more challenging

Channel Simulation; EQ Basics

SIG


© 2015 Cadence Design Systems, Inc. All rights reserved. Used by PCI-SIG under license.

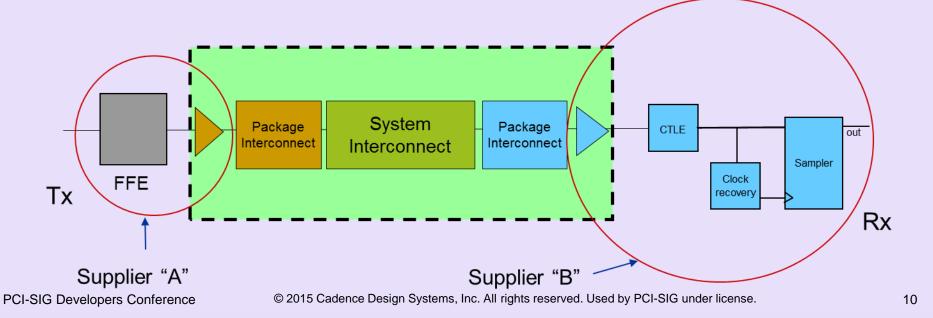
Objectives of Equalization

Maximize SNR

- Done by reducing the area/spread of the PDF
- Auto DFE figures out the peak and tries to maximize the peak
 - Focus on the center, works better in xtalk minimization
 - ✓ Digitally aware
- CTE follows the DFE
 - Analog (indirectly sharpens IR)
 - ✓ Cheap/less power/area
 - Can amplify noise
- VGA amplifies the target to achieve the target
 - Which also amplifies the noise
 - Lower dv_target the better for noise
 Lower dv_target the better for noise
 - IF the Rx can detect (Tradeoff)

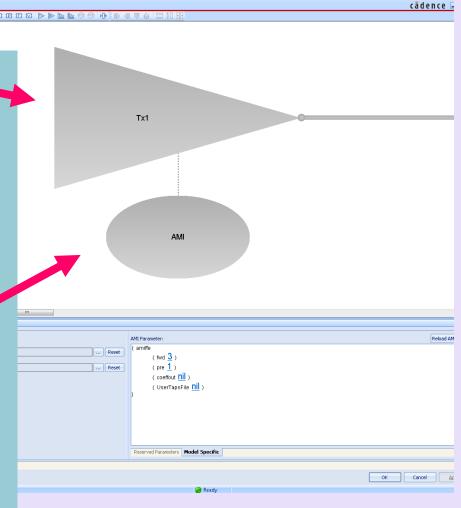
- Problem Statement
- Overview of IBIS-AMI Modeling
- Accurate Modeling of PCIe SERDES IO for 16Gbps or Higher Speeds
 - Using Parameterized AMI Blocks
 - ✓ Using Virtual Reference Design (VRD) Flow for Quick Sign-off
- Conclusion

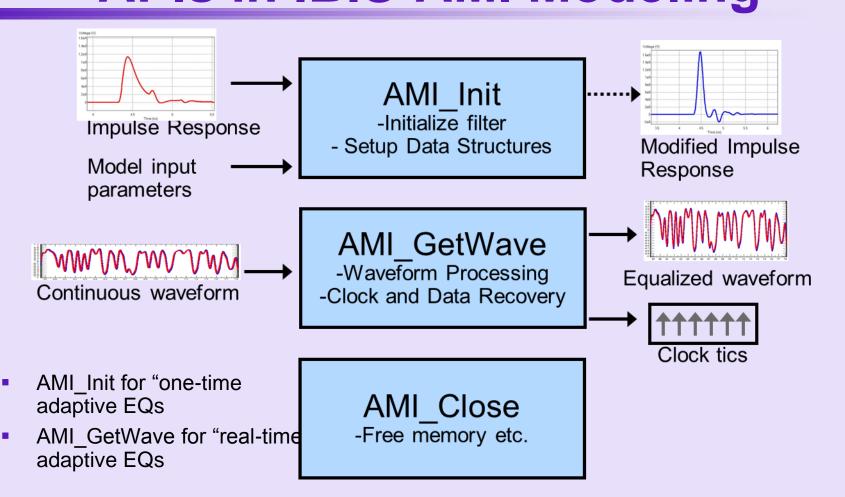
AMI > Algorithmic Modeling Interface


- Extension made to IBIS in 2007
 - Cadence at the forefront of driving AMI through the standardization process
- Enables executable, software-based, algorithmic models to work together with traditional IBIS circuit models
 - ✓ Allows deeper access to on-chip technology/secret sauce
- Enables SerDes adaptive equalization algorithms to be modeled and used during channel simulation
 - ✓ Fast, accurate and flexible

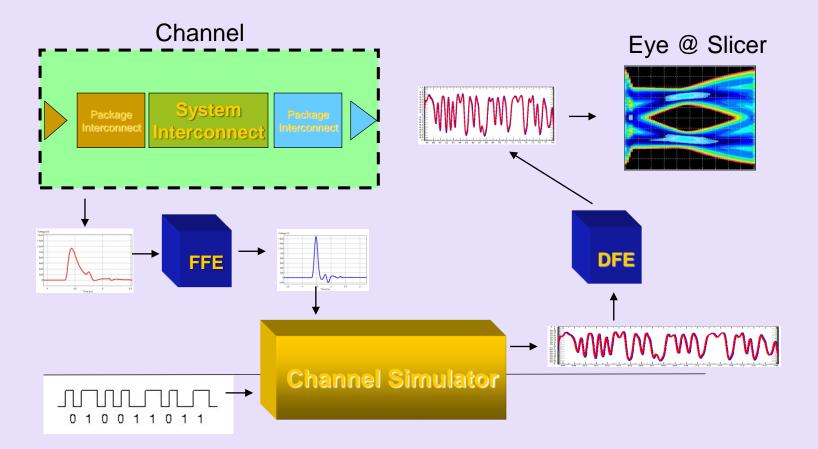
Motivation for AMI

- Interoperability: IBIS-AMI allows plug-and-play simulation compatibility between SerDes models from different suppliers, in a standard commercial EDA format.
- IP Protection: Shared Objects (dlls) are compiled. EDA tool communicates with the dll using the standardized API.
- Flexibility: The Model Maker can use any high level programming language (ex C) to describe the eq at both ends.




IBIS-AMI Model Sub-Components

⁴⁴ File Edit View Setup Tools Compliance Window Help] 알 내 키 ▼ ♥ ▼ 18 33 1 19 1 1 1 ▶ ■ 1 35 17 33 18 18 18 18 19 10 ▶ ▶ № № ® ® 카이트 리 파 & 금 취 용


- Circuit part
 - ✓ IO buffer stage
 - ✓ Voltage swing
 - Parasitics
 - Spice or traditional IBIS format
- Algorithmic part
 ✓ On-chip
 - Equalization functionality
 - ✓ DLL + AMI file

APIs in IBIS-AMI Modeling

IBIS-AMI and Channel Simulation

- Problem Statement
- Overview of IBIS-AMI Modeling
- Accurate Modeling of PCIe SerDes IO for 16Gbps or Higher Speeds
 - Using Parameterized AMI Blocks
 - Using Virtual Reference Design (VRD) Flow for Quick Sign-off
- Conclusion

- SerDes transmitter and receiver modules
 - ✓ Transmitter
 - FFE
 - Edge-boost
 - TX matching network
 - Receiver
 - Rx matching network
 - Continuous-time linear equalizer (CTLE)
 - Variable gain amplifier (VGA)
 - Decision feedback equalizer (DFE)
 - Clock and data recovery (CDR)

Tx AMI

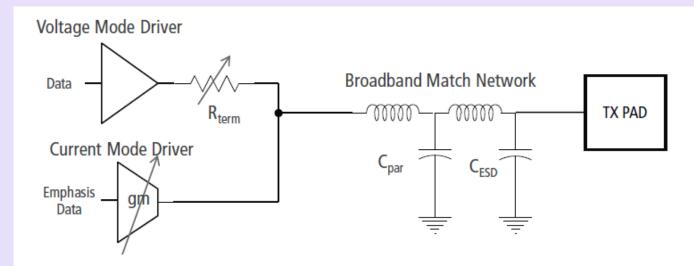
- FFE is modelled as C code
- Boost circuit characterized by step response
- Tx matching network characterized by step response

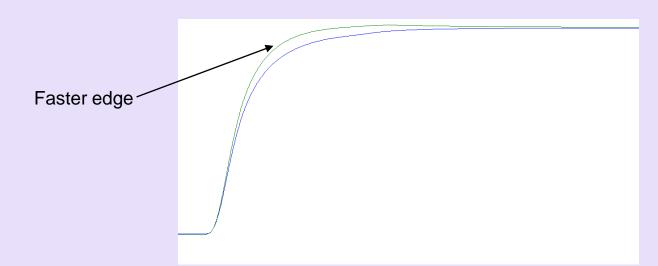
RX AMI

- Tx matching network characterized by step response
- ✓ CTLE, VGA are characterized by step responses
- ✓ DFE, CDR are modelled as C code
- Data path and a parallel clock path

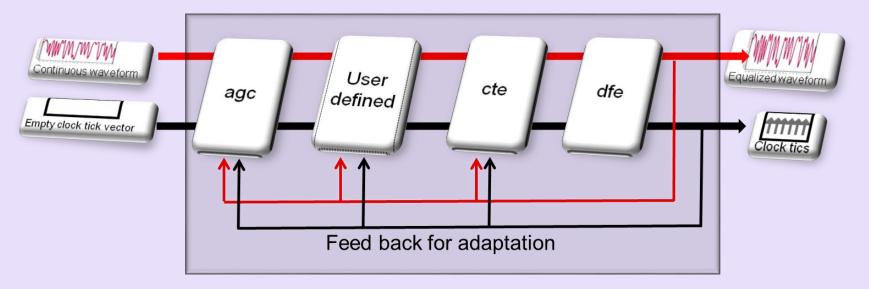
Use s-parameters to model matching network in analog portion

- Boost circuit is implemented at Tx side to improve rise/fall time of the signal
- Boost circuit is a current-mode driver present in parallel with the voltage mode driver module



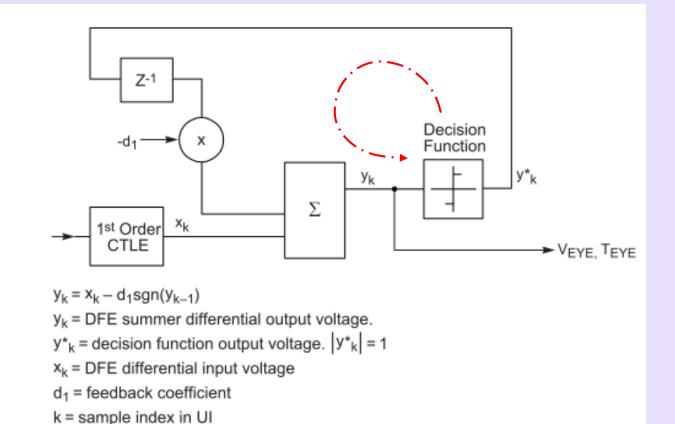

Fig5: Tx Edge-boost circuit in parallel path

© 2015 Cadence Design Systems, Inc. All rights reserved. Used by PCI-SIG under license.

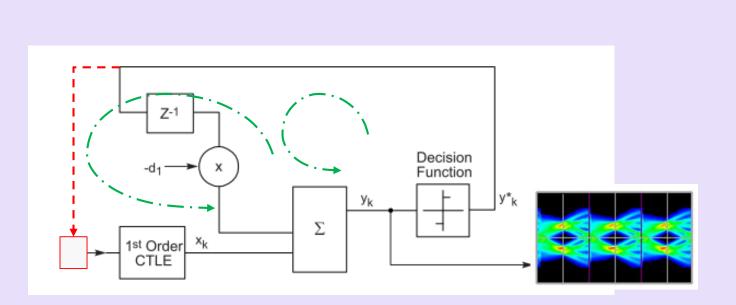


• Modeling Boost effects as IR or s-parameters

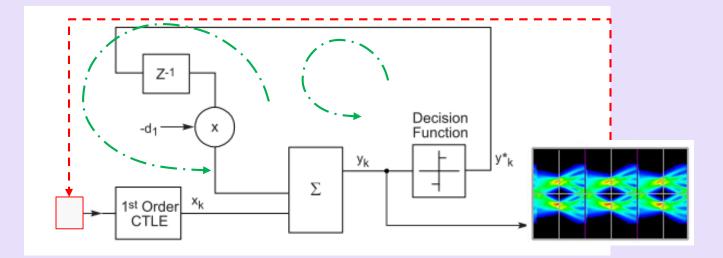
- Input signal is differentiated and fed to a voltagecontrolled current source. Rise/fall time is improved by pumping extra current at the Tx output node.
- Assuming boost circuit is linear, enable boost and characterize Tx while terminating in reference impedance. (Repeat steps 1 and 2)



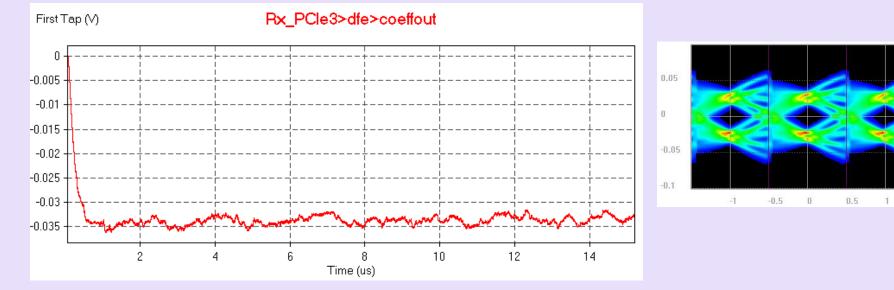
Accurate Modeling of PCle See SERDES IO Using AMI Blocks

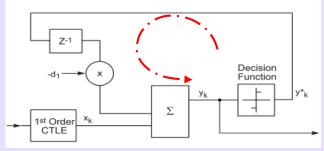

- High level of architectural abstraction
- Extremely powerful and flexible
- Capability to model Tx/Rx end to end
- Parameterized blocks

4-0830

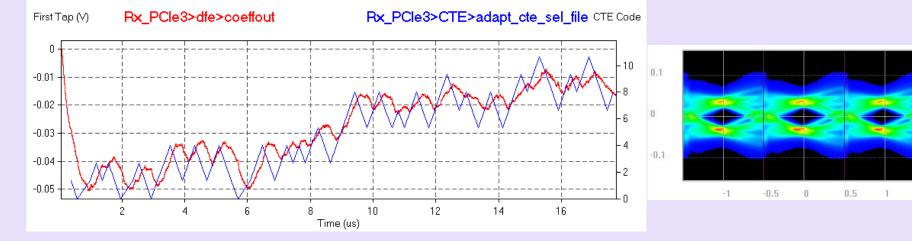


CTE Adapting with Other Metrics (Ex SNR)

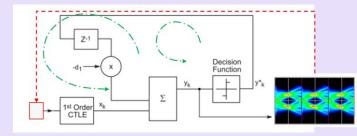



Adaptation can get complex with multiple blocks adapting affecting each other

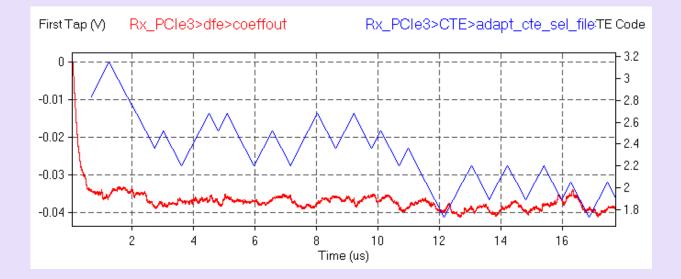
DFE Only Adaptation at 16Gbps



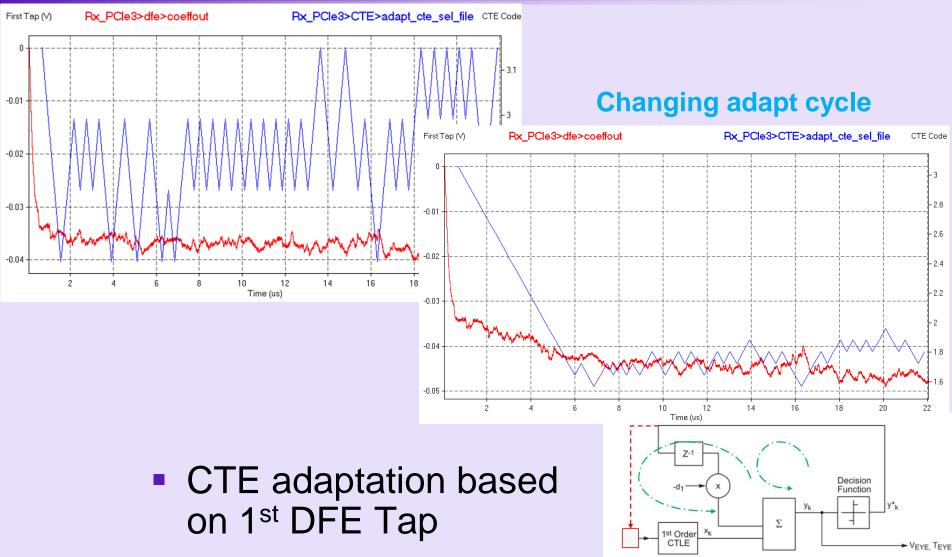
 CTE Adaptation based on SNR



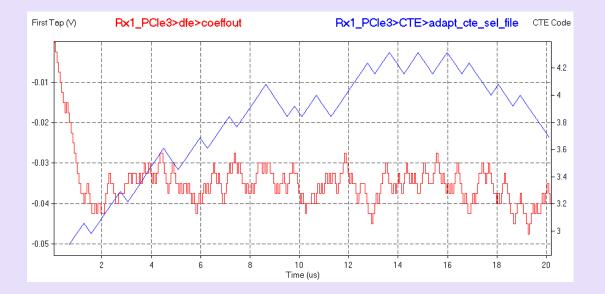
Adapting CTE May Throw the DFE Off



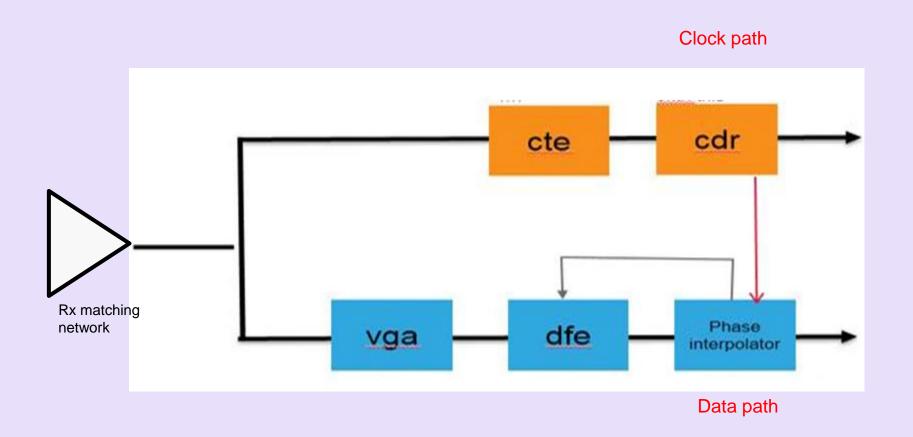
CTE Adaptation based on SNR



Changing CTE Adaptation


Making the adapt cycle slower may be beneficial

Effects of Changing Constant Adaptation Algorithm for CTE


© 2015 Cadence Design Systems, Inc. All rights reserved. Used by PCI-SIG under license.

Digital DFE and Adding Adapting AGC Effects DFE

- Digital DFE only updates after 1024 bits instead of every bit (analog).
- Generally takes longer to finish adapting

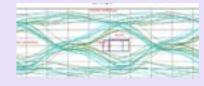
Parallel Clock Path and Data Path

- Problem Statement
- Overview of IBIS-AMI Modeling
- Accurate Modeling of PCIe SerDes IO for 16Gbps or Higher Speeds
 - Using Parameterized AMI Blocks
 - ✓ Using Virtual Reference Design (VRD)
 Flow for Quick Sign-off
- Conclusion

What's in a VRD (Design-in Kit)?

A virtual reference design

✓ All the stuff in here:



Is modeled here:

Measurement results are replaced with simulation results

And simulated/ measured here:

What's in a VRD?

- Parameterized AMI blocks to quickly model various architectures
- Pre-created test-benches to quickly simulate as per compliance
 - ✓ Ability to switch channel models
- Ability to quickly transfer PCB/Package model into the test-bench
 - Can estimate Package for given nets and Package size
- Run simulations and get compliance reports

Tools <u>H</u> elp	cādence		
Virtual Reference Design Platform	Package Layer Estimator DDR Compliance	•	
Padstack	Serdes Compliance with CDN IP M	odels 🕖 🚺 Check Compliance	e
P <u>a</u> d	д - х	Check Compliance	e Help
	Se	erdes Compliance with CDN IP lect Serial Protocol lect Working Directory Launch Testbench	pcie_gen3 10_gkr mipi_dphy mipi_mphy pcie_gen1 pcie_gen2 pcie_gen3 pon usb_2

Choose compliance item

	1				1								
No.	Parameter Symbol					1							
Channel	Tolerancing	g Eye Mask V	Values (table 4-2	27 in PCI Expres	s Base s	spec.)							
1	Eye Height				V _{RX-CH-EH}								
2	Eye Width at Zero Crossing				T _{RX-CH-EW}								
3						T _{RX-DS-OFFSET}		Pkg2	RX_PRIM				
4						V _{RX-DFE-COEFF}		2					
5							V	2					
Differen	tial Insertio	n Loss (figure	e 4-66 in PCI Ex	press Base spec	.)								
6	i Insertion Loss				SDD21								
Differen	tial Return	Loss (figure 4	-56 in PCI Exp	ress Base spec.)									
7	Tx Return Loss			RL - Tx		V							
8	Rx Return Loss				RL - Rx								
Stressed	/Swept Jitte	er Test (figure	e 4-74 in PCI Ex	press Base spec	.)	Channel Tolerancin	g Eye Ma	ask Values					
9	Stressed/Swept Jitter					Item		Value	Simulation Re	esults	Pass/Fail		
					•	Eye Height		25 mV	V _{RX-CH-EH (mV)}	100.821	Pass		
						Eye Width at Zero Crossing		0.3 UI	T _{RX-CH-EW (UI)}	0.425	Pass		
me: Client_Channel					Peak EH Offset from UI Center		±0.1 UI	T _{RX-DS-OFFSET (UI)}	-0.031	Pass			
1. Port	Connect To	Block Name	Conn. Port			Range for DFE d ₁ Coefficient		±30 mV	V _{RX-DFE-COEFF (mV)}				
		Pkg1	pkg_to_pcb	Edit Layout Linkage	2	Eye Mask			Eye Mas	<u>k</u>	Pass		
	•••	Pkg2	PCB	Edit Layout Linkage		Differential Insertion Loss							
						Item		Value	Simulation Results		Pass/Fail		
								Breakout Channel Only	<u>SDD21 - Br</u>	eakout	Fail		
						Insertion Loss		Breakout + Short Calibration Channel	SDD21 - Short		Fail		
								Breakout + Long Calibration Channel	<u>SDD21 - I</u>	Long	Pass		
						Differential Return	Loss						
						Item		Value	Simulation R	esults	Pass/Fail		
						Tx Return Loss			<u>RL - T</u>	x	Pass		
					Rx Return Loss			RL - R	x	Pass			

© 2015 Cadence Design Systems, Inc. All rights reserved. Used by PCI-SIG under license.

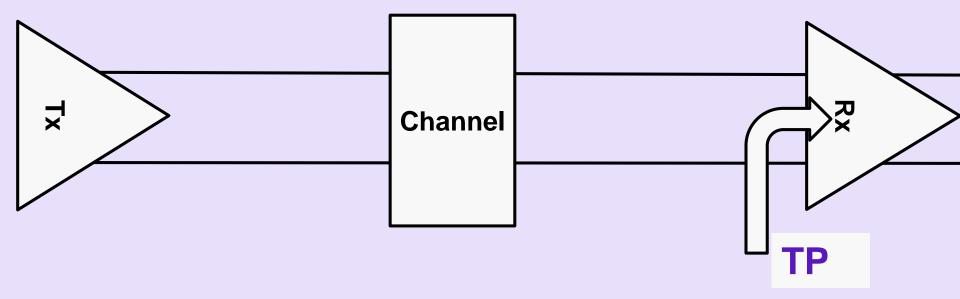
Correlation Techniques

Three level of correlations

SIG

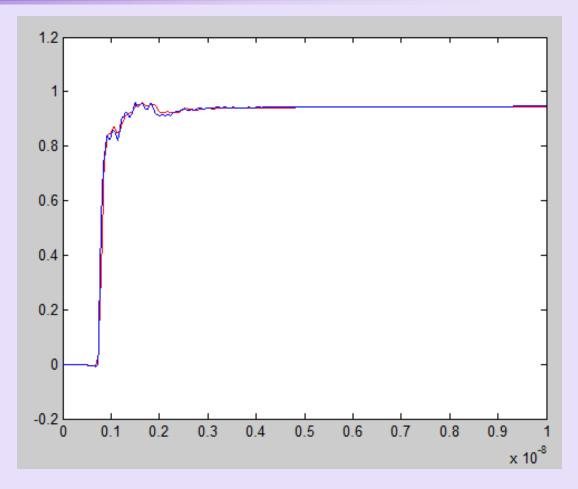
 Block by block correlations against transistor level simulations

Adaption tests against behavioral simulations

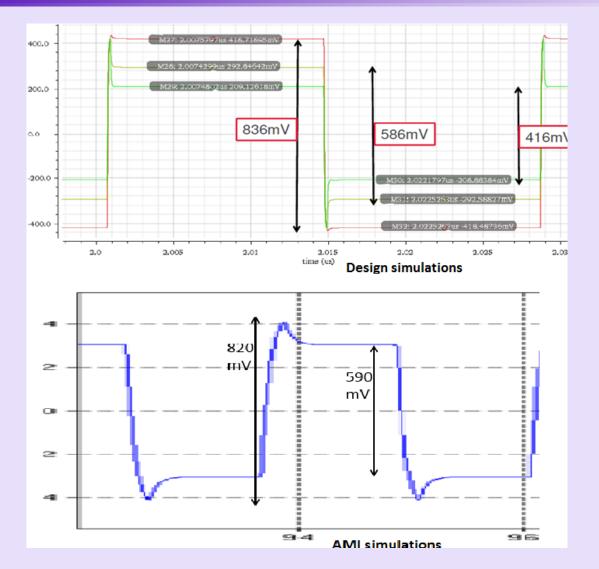

 Tx to Rx link simulations and correlations against Hardware lab measurements

Design

- ✓ 16Gbps serial link-PCIe 4.0
- ✓ 16 FinFET technology node

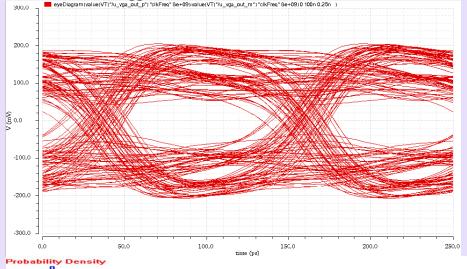


Correlation Results - 1

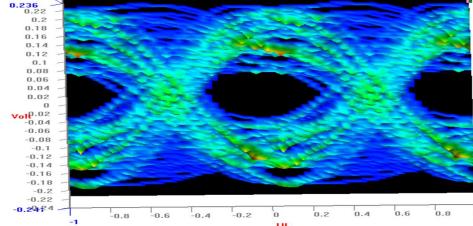

Testing Analog portion - Step response at TP

Red-Using S-params Blue-Design simulation

Correlation Results - 2


 Testing preemphasis and boost

PCI



Correlation Results - 3

Modelling non-linear VGA

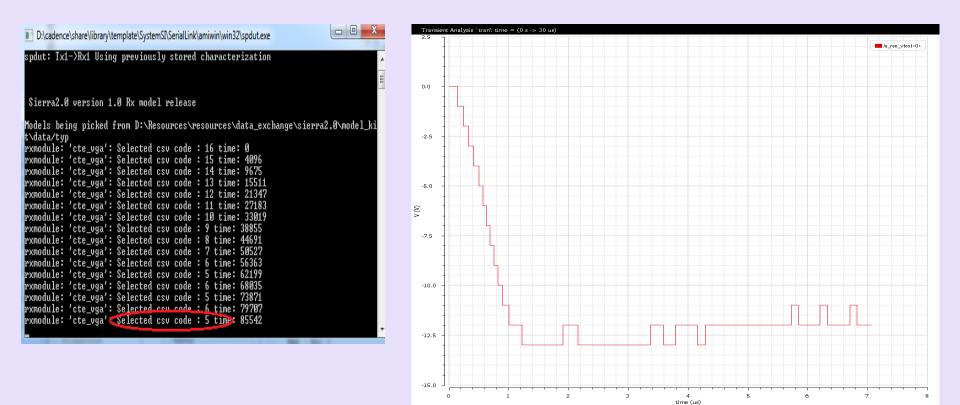
0.061 0.236 0.2

Design Simulation

Eye Amplitude:392mV Eye Height:117mV Jitterpp:0.35UI 800 bits

Model simulation

Eye Amplitude:409mV Eye Height:115mV Jitterpp:0.37UI 100,000 bits


SIG

Correlation Results - 4

VGA adaptation

✓ VGA codes 0 to 16 for different VGA settings

- Problem Statement
- Overview of IBIS-AMI Modeling
- Accurate Modeling of PCIe SerDes IO for 16Gbps or Higher Speeds

✓ Our methodology

- Using Virtual Reference Design (VRD) Flow for Quick Sign-off
- Conclusion

- Need parameterized AMI blocks
 - To quickly build AMI models to mimic hardware
 - Allow electrical engineer designer to create AMI models who knows little programming
- Need a flow that allows rapid building of testbenches to cover various correlations at level of:
 - Transistor level simulations
 - Architecture level simulations
 - Hardware lab measurements

- http://www.eda.org/ibis/
- Eric Naviasky, "Defining a New High-Speed, Multi-Protocol SerDes Architecture for Advanced Nodes" ">http://ip.cadence.com/knowledgecenter/resources/knowdip-wp>

PCI

Acknowledgements

- Taranjit Kukal
- Ritabrata Bhattacharya
- Steve Williams
- Eric Naviasky
- Ken Willis
- Kumar Keshavan
- Ambrish Varma
- Jasleen Ahuja

Thank you for attending the PCI-SIG Developers Conference 2015.

For more information please go to www.pcisig.com