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ABSTRACT  
Topological pattern-based methods for analyzing IC physical design complexity and scoring resulting patterns to identify 
risky patterns have emerged as powerful tools for identifying important trends and comparing different designs. In this 
paper, previous work is extended to include analysis of layouts designed for the 7nm technology generation. A comparison 
of pattern complexity trends with respect to previous generations is made. In addition to identifying topological patterns 
that are unique to a particular design, novel techniques are proposed for scoring those patterns based on potential yield 
risk factors to find patterns that pose the highest risk. 
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1. INTRODUCTION  
As integrated circuit feature sizes continue to decrease putting increasing pressure on patterning technology, design rule 
restrictions for physical designs have increased dramatically1. In many cases this has had the effect of increasing the design 
regularity. In addition, it has focused attention on areas of the design that deviate from the more common and regular 
design styles as these ‘outliers’ may not be considered during the patterning process development and therefore may have 
poor process margin. 
In recent years new software tools have become available to analyze layouts based on topological patterns2,3. Combined 
with techniques for processing large amounts of data, these tools have shown that they are capable of cataloging all unique 
pattern topologies in a layout and comparing the results against the pattern set from a different design. This presents 
opportunities for making quantitative comparisons of design complexity across process technologies, metal layers, and 
design types among other applications. 
Once a set of patterns has been determined to be unique to a particular layout it is helpful to have a methodology for 
filtering the patterns to identify those that pose the most likely risk for manufacturability. This work will propose a flow 
for identifying these high risk patterns based on topological complexity and dimensional factors and demonstrate 
correlation to patterning risk for an example data set from a 7nm design. 
Section 2 will review the concepts of topological pattern cataloging. In Section 3, previous work on analyzing trends in 
topological pattern complexity from node to node will be extended to the 7nm generation while Section 4 will study pattern 
complexity at different levels in the metal stack. A flow for cataloging topological patterns in a layout, comparing them to 
a database of known patterns, and analyzing the unique patterns for potential yield risk will be presented in Section 5, and 
finally conclusions are presented in Section 6.  

2. TOPOLOGICAL PATTERN CATALOGING 
Early pattern matching engines used a Three-Value Logic (TVL) method for describing patterns4. These patterns could 
then be kept in canonical representation in a Pattern Database (PDB)5. However, we have established in our previous work 
that by using a new topological representation we can additionally quantify the complexity of vast numbers of patterns 
very easily3. In addition to the complexity, we have the ability to search, replace, optimize, correlate and run further 
analytics on these patterns. Cataloging a universe of patterns for the same design across each technology node can reveal 
interesting trends.  Different designs from the same generation can also be compared to identify differences and 
commonalities.  



 
 

  
The topological pattern representation uses scanlines that cross the extraction window for all edges of all layers (Figure 
1). The cataloging process can quickly scan reference designs and store these topological patterns in a database.  We 
systematically scan a window across an entire design where the choice of the window size is important.  In every window, 
we break-down and identify every pattern and sub-pattern that exists in that design with dimensions.  A full catalog of all 
patterns with dimensions is stored in a database (Figure 2). 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Not all patterns for a given window size have the same complexity.  The total number of scanlines alone can help contribute 
to a meaningful cost function to quantify the complexity. Figure 3 shows some example topologies of varying complexity. 
When we look at the pattern topologies along with their corresponding dimensions we can analyze the data further to 
isolate new and high risk patterns.  This ability to identify and highlight layout differences is very powerful with many use 
cases.  For example, OPC engineers can quickly find regions that deserve more analysis.  Process and failure analysis 
teams can use this information to feed forward monitoring point.  Generally this data gives an entire team an indication of 
how difficult a new tape-out will be, especially when ramping up a new process. 
 
 

Figure 1. Topological pattern description 

Figure 2. Pattern capture flow 



 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

3. EVOLUTION OF LAYOUT TOPOLOGICAL COMPLEXITY 
Previous work3 used the pattern cataloging process described in Section 2 to analyze a digital circuit block implemented 
in three different process technology generations – 28nm, 20nm, and 14nm. This work extends that analysis to include the 
7nm generation. In each case the same RTL was used to synthesize the physical implementation for the specific process. 
The first three ‘1x’ (i.e., minimum pitch) metal layers were analyzed using a window size corresponding to three metal 
pitches (scaling the size according to the minimum metal pitch for each technology).  
Figure 4 shows the distribution of unique pattern topologies among different complexity classes across different process 
nodes. For each heat map, the simplest topology captured (3×3) is shown in the bottom left and the most complex (10×11) 
is in the upper right. Note that since pattern rotation or mirroring is not considered, a new topology on the lower half of 
Figure 4 would look the same as the upper half (i.e., a 4×5 pattern is the same as a 5×4) and has therefore been omitted for 
clarity. In addition, Table 1 shows both the number of unique topologies and the total number of unique patterns (i.e., 
specific dimensional variations of a topology) for each version of the design. 
There is a clear decrease in the design complexity from node to node. There is a very large decrease from 28nm to 20nm, 
most likely due to the increased design restrictions that resulted from a change from single exposure to double exposure 
patterning processes. In addition there was increased usage of local interconnect layers at 20nm that shifted some of the 
complexity from the 1x metal layers to the new local interconnect layers. Although the metal patterning process and design 
rules were virtually identical between the 20nm and 14nm generations there is still a significant decrease in layout 
complexity in the transition to 14nm. This may be a result of the increased regularity in the front-end-of-line (FEOL) layers 
due to the adoption of FinFET devices with a discrete number of fins. 
The 7nm generation shows another very large decrease in 1x metal complexity. The reason for this is that the 7nm process 
studied here uses a self-aligned double patterning (SADP)6 process that is strictly one-dimensional with fixed line width 
and space values. As a result both the total number of unique topologies and the complexity of those topologies dropped 
by approximately two orders of magnitude. 
 

Figure 3. Examples of topological patterns of varying complexity. 



 
 

  

 
Figure 4. Extracted pattern topology counts for the same digital circuit block implemented in 28nm, 20nm, 14nm, and 7nm 
process technologies. Note that the color scale is logarithmic. 

 
 
Table 1. Total count of unique patterns in the same digital circuit block implemented in three different technology 
generations. The first three 1x metal layers are considered with a window size corresponding to three minimum metal 
pitches in each technology. 

Technology Node Total Unique Topologies Total Exact Patterns 
28 nm 20,763,677 286,593,810 
20 nm 835,025 39,977,934 
14 nm 242,633 17,634,752 
7 nm 4,964 197,257 

 
 
 
Additional analysis of the unique pattern topologies in a given layout can give insight into the design regularity. The 
distribution of unique pattern instances for the 7nm digital logic block is shown in Figure 5. Clearly the design is dominated 
by a few topologies with relatively high counts and the distribution has a long tail of patterns with very low counts 
(although again the counts are orders of magnitude smaller than previous technology generations).  This indicates that 
there may still be opportunities for layout regularization if the topologies with very low instance counts can be converted 
to more common topologies. This can reduce the number of cases that the patterning process needs to be optimized for 
and improve overall manufacturability. 
 



 
 

  

 
Figure 5. Distribution of instance counts for unique pattern topologies in a 7nm digital logic block. 

 
 

4. TOPOLOGICAL COMPLEXITY TRENDS ACROSS THE METAL STACK 
4.1 Methodology Overview  
In this section we explore trends across the metal stack.  Specifically, in this analysis we capture successive two-layer 
patterns across the stack; for example, we get all via layers with corresponding metal above and metal below.  The analysis 
is “anchored” on every via or cut and a fixed-size pattern is extracted around this anchor of size 4 tracks in both x and y. 
4.2 Trends in 20/14nm 
A summary of the Mx/Vx trends for 20nm and 14nm is shown in Figure 6.  Each of the heat maps plot the count of the 
number of topologies for each x/y scanline combination as a separate bin.  As shown in the scale bar in the figure, the 
count for each bin is expressed as a color on a log scale from 0 to log(maximum); a smaller count shows as a darker red 
(until it turns black) and a higher count shows as a brighter yellow (until it turns white).  The highest count x/y scanline 
combination is denoted with an asterisk (‘*’).   
The 20nm and 14nm test cases are actually quite similar which is expected given that these layers share the same design 
rules.  That said, it is clear that 14nm has a small reduction in the maximum scanlines in x/y; for example, V2/M3 for 
14nm goes up to 16x16 complexity bin whereas for 20nm this goes up to a higher 18x18 complexity bin.   
Therefore the maximum complexity within a 4 track by 4 track window has been reduced at 14nm. 
Another interesting observation is the larger number of low complexity bins at 20nm.  This would indicate a better usage 
of available real estate with fewer sparse low complexity patterns for Mx/Vx layers.   



 
 

  

 
Figure 6: Comparison of Mx/VxPatterns between 14nm and 20nm 

 
 
4.3 Trends in 7nm 
The next part of the analysis focused on 7nm trends.  As described earlier, the general trend is toward a significant reduction 
in complexity.  In that context an effort was made to explore how that complexity was distributed across the layer stack.  
A summary is shown in Figure 7.  Statistics for unique topology counts as well as exact patterns counts are plotted for 
each layer.  Recall for any particular topology, there can be multiple specific exact pattern instances of that topology with 
different specific dimensions in x/y.  The peaks of complexity are, as expected, at the interface between layers where 
ground rules have changed (transition vias), for example at V1/M1 and at V3/M4. 



 
 

  

 
Figure 7: Topology and Pattern Count Statistics for 7nm MOL/BEOL Layers 

 
 
 
Figure 8 shows heat maps plotting the count of the number of topologies for each x/y scanline combination as a separate 
bin across the 7nm stack.  This is similar to heat maps shown previously but without any pattern rotations, which explains 
why M2 topologies have heat maps that are rotated relative to M3 topologies.   
The M1 layer combinations (V0/M1 and V1/M1) clearly have the highest complexity and greatest entropy in terms of the 
number of different topological combinations; they exhibit both the brightest bins and greatest spread in terms of the 
number of bins.  That said, much of that variation can be explained by looking at the patterns themselves, such as the 
example shown in Figure 9.  This pattern is a 17x14 topology from V1/M1.  The fact that the metal is wider than the via 
results in a larger number of additional scanlines in the x direction to account for the metal overlap surrounding each via. 
The other layer combinations exhibit relatively fewer numbers of bins.  In particular note how the M2 patterns are clustered 
around 9 scanlines in y whereas the M3 patterns are clustered around 9 scanlines in x.  This is representative of the fact 
that almost every track is filled; the 9 scanlines therefore represent 4 minimum separations and 5 wires in a 4 track window.  
That said, even though the number of topologies is small, there are still a large number of variants for each topology, but 
only in one dimension.  The common 9 scanlines are fixed to min space and width, but across the other dimension there 
can still be a large number of variations. 
It is also interesting to look at cases that are not the common 9 scanline variant.  An example is shown in Figure 10.  This 
is a 10x11 topology from V2/M3.  Note the jog in the wire that causes the introduction of the extra scanline.  The block 
that was analyzed was not yet DRC clean and this analysis highlighted those cases. 
 
 



 
 

  

 
Figure 8: Evolution of Complexity across 7nm Stack 

 
 
 
 

 
Figure 9: Sample High Complexity 17x14 V1/M1 Pattern 

 



 
 

  

 
Figure 10: Sample Irregular 10x11 V2/M3 Pattern 

 
5. LAYOUT DIFF AND ANALYTICS FLOW 

5.1 Review of layout diff methodology 
For this work we implemented a new flow called Diff and Analytics (DNA). This flow is used to analyze designs with the 
pattern-centric view described earlier and a flow diagram is shown in Figure 11. Here, patterns are cataloged for each 
design using pattern classification. The ‘Diff’ step is introduced to reduce the set of cataloged patterns by identifying new 
patterns that exist in the target design but are not in the base design(s). 
 

 
Figure 11: Diff and Analytics Flow Overview 

 
 
5.2 Example: Common metal layers in 20/14nm and 7nm 
In this study, the Diff method is applied to see the differences between common metal layers (i.e., metal layers with the 
same design rules) of a design block at 20nm/14nm and 7nm technology nodes. Figure 12(a) shows the differences in 



 
 

  
terms of pattern topologies or signatures. Here, we see around 45% of 7nm pattern topologies have an overlap with the 
existing topologies previously seen in the design block for 20nm/14nm. As shown in Figure 12(b), more than 90% of the 
exact patterns are different for the 7nm design block when compared to the equivalent design for 20nm/14nm. This result 
leads to the observation that even though there is a good overlap (greater than 50%) of pattern topologies, the delta 
variations or dimensional values are still very different. Therefore, most of the patterns (greater than 90%) in the 7nm 
target design are new or “unknown” patterns which were not seen in the 14nm/20nm base designs.  
 

  
 

 
Figure 12 (a) Mx Topology Comparisons between 7nm and 14/20nm, (b) Mx Exact Pattern Comparisons between 7nm 
and 14/20nm 

 
5.3 Overlay flow 
In order to extract the locations of new “unknown” patterns identified through the ‘Diff’ process, we ran a pattern matching 
tool on the target design layout. This results in the overlay file with the matched boxes for all “unknown” patterns on the 
target design. The generated overlay file can further be used to perform simulations within the overlay regions to 
significantly reduce the turnaround time of a model-based verification flow. Also, the generated overlay file can be used 
for monitoring the design-process weak points in the fab. In this study, we planned to use the generated overlay file to 
correlate it with simulation verified “hotspots”.     
5.4 Analysis flow 
One of the critical steps in the DNA flow is to perform risk analyses on patterns. After reducing the pattern set to new 
“unknown” patterns, we further can reduce the pattern set by running analytics. In this work we extracted pattern features 
including pattern complexity (a topological metric) and counts of critical dimensions (a DFM metric) to compute a risk 
score. 
As shown in Figure 13, the complexity of the patterns is defined as the total number of scanlines or signature matrix size 
in x and y dimensions (i.e., the number of bits in the bitmap representation). The pattern complexity is a topological 
metric3.   



 
 

  

 
Figure 13: Pattern Complexity Calculation 

 
Additionally, counts of critical dimensions (ccd)7 may be defined. This is a user-defined metric and is based on design-
process weak point learning and/or engineering judgement. One can define critical dimensions as simple rules that have 
some correlation with design-process weak points. For example, on metal layers the set of critical dimensions may include 
“line-ends”, “min-space” and “min-width” ranges and/or 2D rules like “inner” and “outer” corners. In Figure 14, we show 
one such scheme for determining ccd. In this example, the pattern has 2 “line-ends”, 3 “min-space”, 6 “min-width” and 5 
“inner-corner” critical dimensions. Therefore, the total value of the ccd metric for this pattern is 16. Note that it is also 
possible to define these ccd rules as patterns and to discount them at the boundary. 
 

 
 

Figure 14: Count of Critical Dimensions 
 
 
5.5 Pattern scoring methodology 
Using these features and an empirical scoring method which is defined as a product function of the complexity and ccd 
population distributions, a risk score is computed for the 2X metal layer patterns of the 7nm design. Figure 15 shows the 
distribution of the computed ccd, complexity and risk score. Here, the risk score assigns relatively higher risk to patterns 
which have both high complexity and ccd in the overall pattern population set.   



 
 

  

 
Figure 15: Via-Anchored Pattern Analysis 

 
5.6 Validation of pattern scoring with lithography simulation 
The validation scheme for the computed risk score involved correlating simulated “hotspots” with patterns and thereby 
their risk score. In this work, we use rigorous optical proximity correction (OPC) models to mimic the optical lithography 
and resist development process effects. The process variability bands (PV bands) demonstrate the printability limits due 
to variation in process parameters such as exposure dose, focus, and mask errors. Capturing process effects helps to 
improve design layouts by controlling patterns sensitivity to process window variations. The generated PV bands are 
checked for hotspot cases like critical width (pinching), critical spacing (bridging) and via coverage ratios. 
After correlating simulation based defects to patterns, we computed the fraction of the defect related pattern population in 
each scored bin to the overall pattern population in that bin. As shown in Figure 16, the computed risk score is shown on 
the x-axis and the percentage of defect patterns with respect to the overall pattern population in the scored bin is shown on 
the y-axis. A strong correlation between the risk score and the defect pattern population is observed. This implies that with 
the increase in computed risk score we have relatively higher probability of patterns posing systematic yield risk. 
 

 
Figure 16: Simulation Hotspot Coverage 

 



 
 

  
Figure 17 illustrates dense-isolated line transition regions, where PV bands show process vulnerability in terms of marginal 
necking and pinching. This behavior suggests that RET modules such as assist feature might need further optimization to 
increase the image fidelity in these locations. 
 

 
Figure 17: Examples of lithography hotspots on 2x metal layers. 

 
6. CONCLUSION 

In this paper we have extended our previous work3 on comparing design trends using pattern complexity analyses to the 
7nm technology node. We observed that the complexity has been reduced significantly for Vx/Mx layers in 7nm due to 
the introduction of the self-aligned double patterning process at for the Mx layers. We also introduced the Diff and 
Analytics (DNA) flow to compare two or more designs and to compute risk scores in order to prioritize patterns with high 
yield risk. We applied the DNA flow for 7nm 2x metal layers (the single-exposure layers with the tightest pitch), and 
compared 4-track sized patterns to the equivalent layer in the 14nm/20nm node. Here, we found nearly 50% topologies 
that are newly introduced in 7nm. However, more than 90% of the patterns seen on these 2x routed metal layers at 7nm 
are unique to those seen in the same layers at the 14nm/20nm nodes due to the introduction of new delta (dimensional 
value) variants. We also computed their risk analyses scores using pattern features corresponding to a count of ‘critical 
dimensions’ (ccd) and complexity. After validation with simulation-based results we observed a strong correlation between 
the computed risk score and the probability of patterns posing systematic yield risk. This methodology may be used to 
efficiently analyze a new design and identify not only those patterns which have never been seen before but also to filter 
those results for the patterns that may pose the most significant patterning risk. 
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