
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.
Accepted for publication at 2017 International Symposium on VLSI Design, Automation and Test (2017 VLSI-DAT)

High-Level Low-Power System Design Optimization

David Pursley+, Tung-Hua Yeh*

+Cadence Design Systems, Inc., USA, *Cadence Design Systems, Inc., Taiwan

Abstract –High-level decisions have the most impact on power

consumption, but the effect of those decisions cannot be known until

the hardware is implemented. This paper walks the reader through

an industrial high-level low-power design methodology that enables

the designer to consider and quantitatively evaluate a broad range of

hardware implementations to find the most power-efficient

architecture. This paper concludes with two industry case studies

using this high-level low power methodology.

INTRODUCTION

It is well understood that decisions with the most impact in terms

of quality of results (QoR) are made early in the design process.

When optimizing for power, experts estimate that optimal

architectural decisions can reduce power by 80% or more. [1] Stated

as the inverse, architectural decisions that are poor for power can

lead to 5X greater power consumption than more power-efficient

architectures.

For this reason, in the ideal world multiple architectures would be

identified and fully evaluated in terms of power, performance, and

area. Then the best architecture would be implemented in hardware,

knowing that the design constraints will be met. This ideal approach

is shown in Figure 1.

Unfortunately, in real world production applications this ideal

flow is rarely, if ever, realized. Despite the best efforts of industry

and academia, there is no analysis mechanism that allows

implementation trade-offs to be made with certainty or even strong

causality at the architectural level, especially when it comes to power

optimization. One reason is that the power consumption is greatly

affected by both the architecture and the microarchitecture.

“Architecture:” Collection of high-level decisions about the

overall structure of the hardware. Three common examples are block

partitioning, communication interfaces, and storage (memory)

architecture. Informally, architectural decisions can be thought of as

those done as a block diagram on a whiteboard in the early stages of

design.

“Microarchitecture:” Collection of lower-level implementation

decisions about the hardware implementation. Three common

examples are pipeline depth, datapath structure, and register

allocation. Informally, these decisions are usually part of the

implementation stage, whether writing the RTL by hand or via high-

level synthesis (HLS).

After the architectural and microarchitectural decisions are fixed,

there is little opportunity for significant power trade-offs in the RTL

flow. It is estimated that the total amount of savings available after

these decisions is 20%. [1]

While architectural and microarchitectural decisions have the

most impact, the extent of their impact is not known until well into

the implementation of the hardware. But at that point, it is too late to

make any substantive architectural changes.

As a result designers have no choice but to make decisions early

in the design process based on “gut instinct.” For experienced

designers, that is often good enough, as any decisions that are sub-

optimal are “close enough,” and there is still a good chance the

overall area and performance targets will be met based on previous

experience. However, it does risk that significant optimization was

missed.

That risk is especially prevalent when it comes to power

optimization, as most designers don’t have the same intuitive feel for

power implications of their decisions as they do on performance and

area.

 PROPOSED METHODOLOGY

A more pragmatic methodology modifies the flow slightly into

something that is achievable today. Instead of attempting to analyze

and make implementation decisions directly from the algorithm or

high-level architecture, the proposed methodology automatically

creates many implementations from the original algorithm and then

quantitatively evaluates each of them to determine the power,

performance, and area trade-offs they each represent.

Specifically, the proposed methodology uses high-level synthesis

(HLS) to automatically generate multiple RTL implementations

architectural models. Commercial HLS tools are well-known to be

able to do advanced power, performance, and area trade-offs, giving

the designer high quality RTL implementations from which to select.

[2]

Each RTL implementation is fully evaluated by state RTL tools,

including power estimation, to provide feedback on the architecture

and the resulting implementations. This methodology is shown in

Figure 2.

FIGURE 1. IDEAL FLOW FROM ALGORITHM TO IMPLEMENTATION

This methodology provides an easy, automated flow from

algorithm to quantitative power, performance, and area metrics. It

provides an exploration capability not present in the typical RTL

design flow, where only one RTL implementation is created,

evaluated, and optimized.

The obvious benefit of the proposed methodology is that the best

implementation can be selected for implementation in silicon. This

removes the guesswork on exactly how to implement the specified

algorithm to meet the given constraints.

However, remember that it is the architectural decisions, not

implementation decisions, that provide the most benefit. For that, we

need to extend the methodology further.

Directed exploration

Directed exploration extends this methodology to aid, or direct,

the designer to the most problematic spots for optimization. For

example, when optimizing for area, it will direct the designer to the

specific portions of the algorithm that are resulting in the most area.

In the simplest case, you can imagine this would point to a segment

of code that results in several high cost multipliers. (Often, it is not

that simple as sharing, registers, and muxing can vastly change area

implications.)

Directed exploration is especially helpful when optimizing for

power. Unlike area, power can vary greatly for any given

implementation, so quantitative analysis becomes a requirement.

Furthermore, different input stimuli can exercise the hardware in

ways that vastly change the power. For example, video encoders and

decoders have much worse power characteristics when the video

stream contains a lot of motion.

Power dissipation also changes over time. Wireless modems are

quite different when attempting to acquire a signal vs. tracking a

locked signal. Similarly, a processor has different power dissipation

when booting an OS vs. waiting at idle vs. running a specific

application. Power dissipation changes even when time is measured

in microseconds or nanoseconds, which becomes a key concern

when optimizing for peak power.

Getting an accurate measure of RTL power consumption during

design exploration has been a major challenge. This is complicated

by the fact that different tools are used at different stages of the

design, for example at RTL vs. place and route. Recently,

commercial tools have emerged that deliver time-based RTL power

analysis with system-level runtimes and capacity, as well as high-

quality estimates of gates and wires based on production

implementation technology. [3] The accuracy of these tools is within

15% of signoff estimates.

As shown in Figure 3, accurately identifying high-power

“hotspots” in the RTL, both in time (waveforms) and space (RTL

code), allows the hotspot to be mapped directly to the corresponding

code in the algorithm. This gives the designer very precise feedback

on the exact behavioral code that should be optimized to reduce

power, completing the feedback loop shown in Figure 4.

FIGURE 4. DIRECTED ARCHITECTURAL EXPLORATION

FIGURE 3. IDENTIFYING POWER HOTSPOTS IN TIME AND SPACE

FIGURE 2. PROPOSED METHODOLOGY

RESULTS

This section details applications of the above methodology. The

first is an inverse discrete cosine transformation (IDCT), selected

because it is easily understood, widely used, and non-proprietary.

The second example details the results of this methodology for an

industrial software defined radio (SDR) application committed to

production silicon.

Simple example: Inverse discrete cosine transform

The DCT and IDCT is a commonly used transformation in signal

processing. The specific implementation we used here is a two-

dimensional IDCT of the sort that would typically be used in image

decoding, such as in a JPEG or MPEG decoder. [4]

In hardware, this is often implemented as two one-dimensional

IDCT’s in succession, one for row-processing and one for column-

processing. To improve overall throughput., the two IDCT’s are done

in parallel with intermediate value storage between them as shown in

Figure 5.

We implemented the two 1-D IDCT blocks as a SystemC

algorithm, modified from C source code from a publicly available

source. [5]

We applied the quantitative trade-off analysis methodology to

evaluate multiple design decisions. Specifically, we varied the

following architectural and microarchitectural choices to explore the

design space.

Buffer architecture: We varied its implementation as either

single-write/single-read or high-performance dual-read/dual-write.

Latency: We constrained the HLS tool to implement the IDCT

loop in 8, 16, 32 clock cycles.

Loop pipelining: For the implementations with longer latencies,

we allowed the HLS tool to pipeline the IDCT computation loop so it

can begin execution every 8 or 16 cycles.

Clock frequency: We varied clock frequency supplied to the HLS

tool from 100MHz to 400MHz in a 65nm low power technology.

Note that certain combinations of decisions were not possible,

such as a lower performance memory architecture with a high-

performance loop pipelining microarchitecture. Also, the highest

frequencies were not realizable (could not close timing) with certain

combinations of microarchitectural decisions. The non-

implementable combinations were excluded from analysis.

In total, 61 different RTL microarchitectures were considered, as

shown in Figure 6. Each was evaluated for area (as reported by logic

synthesis), power (as reported by gate-level vector-based power

analysis), and overall bandwidth (determined via RTL simulation).

The microarchitectures covered a large design space. After

excluding any points that were pareto dominated by another point,

throughput varied by 4.8x, area varied by 2.2x, power varied by 7.5x,

and energy per IDCT varied by 2.6x.

It was interesting that the most energy-efficient microarchitecture

changed with throughput, as shown in in Figure 7.

In Region B, where throughput is 22 to 30 million samples per

second, an unpipelined microarchitecture taking 16-clock cycles per

loop iteration was the most energy-efficient.

In Region C, where throughput is greater than 30 million samples

per second, a highly pipelined microarchitecture was most energy

efficient. In fact, at the highest throughputs this pipelined

microarchitecture was 35% more energy efficient than the

microarchitecture from Region B.

In Region A, where throughput is less than 22 million samples

per second, a different pipelined microarchitecture was more energy-

efficient (but larger) than the microarchitecture from Region B.

FIGURE 6. IDCT TRADE-OFFS FROM 61 IMPLEMENTATIONS

FIGURE 7. ENERGY EFFICIENCY OF IDCT MICROARCHITECTURES

FIGURE 5. SIMPLE 2-D IDCT PROCESSING UNIT

This underlines the fact the “best” architectural and

microarchitectural decisions are not always an obvious choice,

especially when optimizing for power.

Industrial example: software-defined radio

This methodology, including directed microarchitectural

exploration, was used to implement approximately 8 million gates in

an industrial software-defined radio receiver application. The

application included three major blocks, tightly coupled including

feedback. Details of the application are proprietary.

The performance requirements were determined a priori by the

overall system. All blocks had throughput requirements (1 sample

every n cycles), and two of the blocks also had latency requirements

(no less than m cycles from input to output). Clock frequency was

fixed at 500MH in a 28nm technology library.

Area was the primary optimization goal, with dynamic power

reduction as a secondary goal. Area was reported after logic

synthesis, and power was measured via vector-based RTL power

estimation.

Block A: This block was the most complex, including not only

computation but also control of the other blocks. Initial optimization

efforts focused on three of the four functions included in the block.

However, after some analysis it was the fourth function causing the

performance bottleneck. After additional optimization, two RTL

implementations stood out as especially relevant from an area

perspective, being within 0.5% of each other.

Power analysis then determined the slightly larger version had

34% less power consumption. Some of the area optimization had

severely decreased the effectiveness of fine-grained clock gating.

Block B: This block was less complex than Block A, but

replicated several times so it had significant impact on area and

power. After a number of synthesis runs with some initial exploration

of performance constraints, the results were analyzed to determine

where potential area optimizations may be found. One computational

kernel was found to be dominating both area and power, and

optimization was focused on this portion of the design.

A majority of improvement came from applying two types of

optimizations. One optimization creates custom datapath components

for sequences of operations, which generally reduces the area for the

computation, but prevents some sharing. The other optimization

partitions the datapath, which parallelizes computations but allows

sharing within them. These were applied separately and in tandem.

In the end, the version where both optimizations were applied

was the best overall implementation in terms of both area and power.

It was 23% smaller than the largest point. Unfortunately, the same

testbench (simulation vectors) was not used for all points, preventing

a power comparison of all points. But this smallest implementation

also consumed the least power of the ones that were measured.

Block C: This block was very small, accounting for 3% of the

total area and 2% of the total power. The same high-level techniques

were applied by adjusting constraints on the HLS tool

Several microarchitectures were generated by varying the

constraints given to the HLS tool. No directed exploration was done

given its small contribution to overall area and power. This resulted

in one pareto optimal point that was 9% smaller and 5% less power

than the worst data point.

Overall results: By using the methodology of quantitative trade-

off analysis, including directed exploration, this industrial application

was significantly smaller and more power-efficient than originally

budgeted. This methodology is credited with reducing the area of the

design by >25% with a 4x improvement in power, compared to the

estimates based on the previous-generation hand-written RTL.

CONCLUSION

The proposed methodology leverages the ability of HLS to

generate multiple RTL implementations so that they may be

quantitatively compared in terms of area, performance, and power.

Beyond simply allowing more data points to be generated, this

methodology also helps focus the designers’ optimization efforts on

wherever it will have the most impact.

We found that quantitative analysis is especially important when

it comes to power optimization. One reason is that most real-world

designers don’t have the same intuitive feel for power implications as

they do on performance and area. Moreover, as seen in Block A of

the industrial software-defined radio example, sometimes very small

changes can have huge implications for power.

REFERENCES

[1] G. Delp, Y. Trivedi, “Design and Verification of Low Power

SoCs,” ISQED09 Embedded Tutorial, 2009.

[2] Cadence® Stratus™ High-Level Synthesis,

https://www.cadence.com/content/cadence-

www/global/en_US/home/tools/digital-design-and-

signoff/synthesis/stratus-high-level-synthesis.html

[3] Cadence Joules™ RTL Power Solution,

https://www.cadence.com/content/cadence-

www/global/en_US/home/tools/digital-design-and-

signoff/power-analysis/joules-rtl-power-solution.html

[4] Wikipedia, “JPEG,” http://en.wikipedia.org/wiki/JPEG.

[5] Independent JPEG Group, http://www.ijg.org/files/, 2016.

https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/power-analysis/joules-rtl-power-solution.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/power-analysis/joules-rtl-power-solution.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/power-analysis/joules-rtl-power-solution.html
http://en.wikipedia.org/wiki/JPEG
http://www.ijg.org/

