
WHITE PAPER

Growth in demand for artificial intelligence (AI) and digital signal processing (DSP) applications,

coupled with advances in semiconductor process technology, drives increasingly denser SoCs.

These complex SoCs further challenge the design team’s ability to meet performance, power,

and area (PPA) goals within tight time-to-market windows. We need automated and targeted

solutions that efficiently handle algorithmic design content inherent in AI and DSP to keep

up. Such solutions must also be well correlated with results obtained from physical design

to minimize physical design iterations. Designers rely on several mature production-proven

tools, from algorithm development to physical implementation. Any improvements to the

design flow should maximally leverage existing tools where possible and deliver focused

automation to address the challenges of iteration and poor correlation.

Contents

Introduction ...2

Algorithm Development...3

Integrating MATLAB and Stratus HLS4

AES Encryption Example ...5

Conclusion ...6

Accelerate Algorithm to Silicon Development
with Stratus HLS
By Jeff Roane, Director of Product Management, and Vinod Kumar Khera, PhD

Accelerate Algorithm to Silicon Development with Stratus HLS

2www.cadence.com

Algorithm Development
Algorithm development begins with mathematical models written in C++ or similar abstract programming languages. MathWorks
MATLAB is the de facto industry-standard multi-paradigm programming language and numerically compute environment. In
addition to algorithm performance tuning, the developers commonly make tradeoffs between numeric data types, algorithm
fidelity, and PPA. For example, using single-precision floating-point data types may provide adequate algorithm fidelity and
handle saturations and overflows, but representing data as a 32-bit IEEE 745 floating point is PPA expensive and may be overkill
for the design requirements. Today, these tradeoffs are made without accurate PPA visibility because getting accurate PPA
requires traversing the design implementation phase. Any improvement over the conventional flow should give algorithm
developers early access to the implementation PPA without burdening the design implementation team. With such visibility,
algorithm developers can tune their algorithms with the confidence that they have made data-driven PPA tradeoffs that
correlate well with downstream implementation.

Joules
RTL Power

GenusTM

Synthesis

Design, TB,
Meta-data

RTL

A
u

to
m

at
ed

Netlist

GDS

GenusTM

MATLAB®

InnovusTM

StratusTM HLS

HDL
 CoderTM

Figure 1: The integration allows algorithm developers to refine their algorithms with
accurate data-driven PPA measurements that correlate well with downstream implementation

	f Automated creation of synthesizable SystemC

	f Gives architects accurate visibility into PPA envelope

	f Automated import and Stratus project creation

	f Architectural exploration and optimization

	f Eliminates iteration

	f Improves PPA

	f Reduces schedule

Accelerate Algorithm to Silicon Development with Stratus HLS

3www.cadence.com

RTL Design Implementation
MATLAB is easy to use and contains comprehensive toolboxes for multiple application domains, so it is used widely for architectural
exploration and algorithm development. However, we need register transfer language (RTL) for the hardware implementation
of these algorithms in an IC or ASIC. So, it is required to convert the models implemented in high-level languages such as MATLAB,
C/C++, and SystemC™ to RTL.

Moving from abstract MATLAB models to RTL descriptions has required manual conversion of MATLAB code into RTL. By definition,
an RTL description expresses the cycle-accurate behavior. This step involves the design of a micro-architecture that accurately
captures detailed cycle-by-cycle behavior and schedules operations among finite hardware resources to meet PPA goals in
the implementation. To achieve optimal PPA, the micro-architectural solution space must be thoroughly explored—where the
impact of alternate schedules, resource sharing, and data types can be measured. Unfortunately, the solution space is rarely
explored because of the high engineering cost and time required to manually write RTL for candidate micro-architectures. An
apparent deficiency of the conventional flow—where algorithm development is abstracted from implementation—is the absence
of accurate PPA measurements to drive algorithm refinement, along with a lack of downstream visibility and increased risk of
missing PPA goals.

This is precisely the problem solved by high-level synthesis (HLS). Cadence® Stratus™ HLS is the market-leading HLS solution,
as reported by Pedestal Research 2020 HLS market analysis. Stratus HLS takes an abstract design description in MATLAB, C,
and C++ and optimizes the micro-architecture, yielding more optimal RTL that meets the design constraints. A key component
of Stratus HLS is its programmable exploration environment, which enables automated exploration of candidate micro-architectures
for selecting the most optimal micro-architecture. It is based on accurate measurements rather than inaccurate estimates.

Stratus HLS automates the design and verification flow from transaction-level modeling (TLM) to gates. The architecture exploration
involves proposing changes to the design constraints, optimization, simulation, and results analysis to achieve the desired PPA.
At a high level, it comprises the below exploration steps, yielding multiple architectures in an effort to find an implementation
that best meets design requirements:

	f Define and simulate the high-level description in C++ or SystemC

	f Apply HLS and synthesis constraints for optimization and RTL generation

	f Simulate to verify functionality and prepare for power analysis

	f PPA analysis

MATLAB/C/C++/SystemC Design

RTLCadence Stratus HLSSynthesis Directives

Tech Library Spec

Figure 2: Stratus HLS takes an abstract design description in MATLAB, C, and C++ and optimizes
the micro-architecture, yielding more optimal RTL that meets design constraints

Propose

SystemC

Optimize

Xcelium
SimulationAutomated

Exploration
Joules Power

Analysis

RTL

Optimize
Stratus

Simulate

Measure

Figure 3: The programmable exploration environment in Stratus HLS supports a rapid propose, optimize,
simulate, and measure loop that automates micro-architecture exploration to achieve the desired PPA

Accelerate Algorithm to Silicon Development with Stratus HLS

4www.cadence.com

Integrating MATLAB and Stratus HLS
Cadence and MathWorks developed the industry’s first integration of a multi-paradigm numeric compute environment (MATLAB)
and HLS (Stratus HLS) to address the challenges presented by the conventional flow where algorithm development and RTL
implementation are disparate activities.

The integration first automates the handoff of the algorithm described in MATLAB to Stratus HLS via MATLAB’s HDL Coder option.
HDL coder translates the MATLAB code description into synthesizable C++ that Stratus HLS can read. This handoff includes the
design, testbench (input data and expected response), and meta-data, allowing automated project creation by Stratus HLS.
By having the design and testbench handed off together, design verification and activity-driven power analysis can be performed
on the resultant RTL produced by Stratus HLS.

H
LS

 Flow

M
A

TLA
B

 +
 H

LS
 FlowTrad

ition
al R

TL Flow

MATLAB

Genus/Joules

Completed design

RTL

MATLAB code

Behavioral
SystemC

Stratus HLS

C
on

crete, m
easu

red
 feed

b
ack

Figure 4: MATLAB and Stratus HLS address challenges presented by the conventional flow
where algorithm development and RTL implementation are disparate activities

MATLAB MATLAB
HDL Coder

Stratus
MATLAB
importer

Stratus
HLS

Design model
(MATLAB code)

TB
(MATLAB code)

SystemC Module/HLS
Design

SystemC TB

RTL-1
Low power

RTL-2
Small area

RTL-3
High speed

MetaData

Stratus
project files

MetaData

C++ Design/Class with
SystemC Data Types

C++ TB/Class with
SystemC Data Types

MATLAB HDL Coder flow

Stratus HLS flow

Figure 5: The automated handoff of an algorithm described in MATLAB to
Stratus HLS via MATLAB’s HDL Coder option

Accelerate Algorithm to Silicon Development with Stratus HLS

5www.cadence.com

The integration squarely addresses the challenges of the conventional flow by providing early and accurate PPA measurements
for the algorithm development team and the automated production of optimal RTL for the design implementation team. Stratus
HLS is designed to automate and accelerate design by moving manual work to a higher level of abstraction. Together algorithms
can be tuned to yield more optimal PPA, and the solution space can be explored and optimized, ensuring that the design
implementation team achieves the same PPA viewed by the algorithm developers.

AES Encryption Example
To better understand the productivity gain of this integration, consider an example where an advanced encryption standard
(AES) encryption algorithm is initially developed in MATLAB, then exported to Stratus HLS. Wall clock times are measured for
each step. Figure 6 shows the time consumed by each step. It shows the process, with steps requiring human activity in red
and fully automated compute-time steps in blue.

For this example, the user could explore five micro-architectures with only 20 minutes of human activity time and two hours
of compute time. Significantly less than what would be required in a conventional manual flow—such a flow would take weeks
and a small team of engineers. These steps are detailed below:

1. Export the MATLAB: After developing and simulating the algorithm in MATLAB, the user exports the design using MATLAB’s
HDL Coder. HDL Coder translates the MATLAB code into synthesizable C++. HDL Coder also exports the testbench and
metadata. The testbench is composed of stimulus and expected results.

2. Customize the Setup: Stratus HLS’ Behavioral Design Workbench (BDW) import function reads the design, testbench, and
metadata and creates a Stratus HLS project. The user configures the Stratus HLS project by specifying the technology
library, design constraints, and exploration settings.

3. Exploration: Once configured, Stratus HLS explores the solution space. Exploration is governed by a Stratus HLS Tcl control
file that defines how constraints are changed and imposed on the candidate micro-architecture designs.

4. Analysis: In addition to HLS optimization, Stratus HLS launches Cadence’s Genus™ Synthesis Solution, Xcelium™ Logic
Simulator, and Joules™ RTL Power Solution to verify functionality and measure power consumption.

Export
fro

m
 M

ATLAB

Stra
tu

s H
LS ru

ns

Custo
m

ize P
ro

je
ct S

etu
p

Joules Power Analysis

Genus Logic Synthesis10 mins

Human Activity Time
Compute Time

10 mins 7 mins

128 mins

115 mins

ConvertM to SystemC
Design and Testbench

Start

Synthesize to Verilog
Parallel execution

Change technology library
Change clock frequency
Global Foundries @ 500 MHz
Added exploration scenarios

Simulate each scenario in Xcelium with test vector
Generate simulation activity data
Measure power with Joules
Parallel execution

Synthesize Verilog to gates
Check timing and area
Parallel execution

Figure 6: Testcase showing the productivity gain delivered by the integration—five micro-architectures
explored with only 20-minutes of human activity time and 2 hours of compute time

For this example, scenarios, 20 mins human-time, 2 hours compute time!

Pipeline

Throughput

MATLAB SystemC

Area (µm2) Power (mW)

1 19.475 10.7

2 13.194 10.1

4 9.877 7.5

6 8.139 5.5

11 6.339 4.5

Total Elapsed Time = 153 mins

Accelerate Algorithm to Silicon Development with Stratus HLS

© 2022 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and the other Cadence marks
found at www.cadence.com/go/trademarks are trademarks or registered trademarks of Cadence Design Systems, Inc. All other
trademarks are the property of their respective owners. J12863 12/22 SA/KZ/PDF

Cadence is a pivotal leader in electronic systems design and computational expertise, using its
Intelligent System Design strategy to turn design concepts into reality. Cadence customers are the
world’s most creative and innovative companies, delivering extraordinary electronic products from
chips to boards to complete systems for the most dynamic applications. www.cadence.com

Conclusion
In a conventional design flow, getting accurate implementation PPA details during the algorithm development phase can be very
challenging, if not impossible, as it requires burdening the implementation team with executing trial implementations. Due to
this steep challenge, algorithm developers use imprecise estimates for PPA prediction. The imprecise estimates used by algorithm
developers often result in a failure to meet the PPA goals. The MATLAB integration with Stratus HLS gives algorithm developers
rapid access to accurate PPA details, allowing measurement-driven algorithm refinement. The solution minimally disturbs the
existing design flow and automates much of the manual process from MATLAB to implementation details. This integration also
automates micro-architectural exploration and the production of more optimal RTL, which yields improved PPA and shorter design
schedules. Early results suggest that this flow will become the de facto standard method of developing and implementing
algorithms targeted for silicon.

