
18 N AT I O N A L D E F E N S E • O C T O B E R 2 0 2 0

n One can view the Defense Department’s Digital Modern-
ization Strategy as a direct response to this 2018 National
Defense Strategy goal: “Prototyping and experimentation
should be used prior to defining requirements and commercial
off-the-shelf systems. Platform electronics and software must
be designed for routine replacement instead of static configura-
tions that last more than a decade.”

Within the strategy, one can argue that the Defense Depart-
ment chief information officer’s priorities — cybersecurity,
artificial intelligence, cloud, command, control and communi-
cations — were developed to help achieve the aforementioned
National Defense Strategy goal.

And that goes for the digital modernization goals as well:
innovate for competitive advantage; optimize for efficiencies
and improved capabilities; evolve cybersecurity for an agile and
resilient defense posture; and cultivate talent for a ready digital
workforce.

In response, the services are executing initiatives to meet
these priorities and achieve these goals.

All these approaches are based on software development.
Specifically, they are based on “DevSecOps,” as is now being
used with the software development approach. These are a
set of practices that combine software development (Dev)
and information-technology operations (Ops) with the aim to
shorten the systems development lifecycle and provide con-
tinuous delivery with high software quality. When referenced
as DevSecOps, the (Sec) acknowledges that for the Defense
Department, security issues are of a paramount concern and
must be addressed.

The use of DevOps has been a commercial best practice for
years and it does address the department’s desire for agility. In
truth, its adoption of DevOps is an excellent first step.

But there is a reason why this is a popular joke about
DevOps:

Question: “How do DevOps engineers change a lightbulb?”
Answer: “They don’t. It’s a hardware problem.”
This joke highlights the wisdom of one of the popular

quotes attributed to Alan Kay, the inventor of Smalltalk and
the Alto, and the driving force behind Xerox PARC in 1982:
“People who are really serious about software should make
their own hardware.”

Fifteen years ago, the commercial electronics ecosystem was
organized as it had been since the 1970s. There were “chip
guys,” “software geeks” and “systems geniuses.” Each group
worked hard to optimize their craft and great gains were made,
and sins were masked thanks to the all-powerful Moore’s Law.

The limits of optimization began appearing somewhere
between 2000 and 2005 with systems, software and single-core
performance gains leveling off as predictions of power con-
sumption causing rocket engine-level heat made waves in trade

magazines. At that time, the first articles predicting the end of
Moore’s Law and the crucial co-dependency between software
and hardware were published, with Herb Sutter’s 2005 article
in Dr. Dobbs Journal, “The Free Lunch Is Over” perhaps being
the most prominent.

Sutter’s article stated that microprocessor serial-processing
speed is reaching its physical limit, leading to two main conse-
quences.

First, processor manufacturers would have to focus on prod-
ucts that better support multi-threading such as multi-core
processors. Second, software developers would be forced to
develop massively multi-threaded programs as a way to better
use such processors. The “free lunch” — the constant improve-
ment of hardware performance that made a software devel-
oper’s life easy — would come to an end.

Experts then predicted a new golden age of domain-specific
architectures — custom hardware — and domain-specific lan-
guages: software optimized for the custom hardware.

The answer to ensure further gains was to optimize across
the strata to support multi-core architectures. With this, the

problem of power became the key driver.
In particular, the burgeoning smartphone market saw battery

life as a key limitation to adding new capabilities and a major
source of customer dissatisfaction. Additionally, consumers
were showing an appetite for features such as web browsing
that demanded more and more processing power.

This all required specialized hardware support: networking,
video, multi-tasking, graphics, low power, audio, security and
camera.

All of these elements had been available in separate prod-
ucts, but never brought together in a phone. Each of them had
been highly optimized. However, to make a phone with all
of these features, very different success optimization metrics
needed to be applied. The metrics required a new methodol-

Developing Military
Electronic Systems Calls
For Holistic Strategy

Industry Perspective BY STEVE CARLSON, JAMES S.B. CHEW AND FRANK SCHIRRMEISTER

O C T O B E R 2 0 2 0 • N A T I O N A L D E F E N S E 19

ogy to optimize using a new cumulative objective function. To
drive the cost function down, it became clear that the tradi-
tional serial strata of the system development process needed
to be shattered and that the design chain had to be restruc-
tured.

For example, until the early 2000s, the design chain of
embedded mobile systems was dominated by platform-based
designs. The semiconductor vendors provided all drivers, and
then interacted with software OS vendors, like Palm OS, Sym-
bian, Microsoft Window CE and Pocket PC 2002 to port their
operating systems to their silicon. They would then provide it
jointly to device and equipment manufacturers. This situation
has now been replaced by only two operating systems — iOS
and Android — integrating all the required services as middle-
ware in exchange to enable a much bigger ecosystem of apps
that can be developed based on early representations of the
hardware.

For example, think of the iOS and Android software devel-
opment kits that are provided as pure software representations.

By taking on more responsibility for the hardware/software
stack, a much bigger ecosystem of application developers has
been unleashed. In exchange, however, the hardware abstrac-
tion layer, or HAL, of an Android device, for instance, must be
architected and verified in a way that software development

can start in parallel. This is what the industry today refers to as
the “shift left.”

Demolishing the barriers between teams begins with elimi-
nating the serial hardware-then-software process. Instead, soft-
ware development has, at least partially, “shifted left” to overlap
with hardware design. This change often makes the software
team a little uneasy at first, as working on a “squishy” hardware
platform is new ground.

But, as the software developers begin to recognize that they
do not have to work around all of the hardware bugs anymore,
they now have a choice as to whether to fix the problem at
the hardware source or work around it in software. In fact,
once this hardware/software design process is implemented,
many software developers relish the ability to push the prob-

lems back to the hardware team.
Furthermore, to really co-optimize hardware and software,

the industry is entering a phase of custom, configurable hard-
ware with associated software. One clear example of this trend
is the emergence of programmable, extendable processor archi-
tectures, as well as a resurgence of reconfigurable architecture
that can switch algorithms within very small timeframes.

It is worth noting that while a first wave of reconfigurable
architectures was introduced in the early 2000s with long-
forgotten startups like Adaptive Silicon, Elixent, Triscend,
Morphics, Chameleon Systems, Quicksilver Technology and
MathStar, they are finding a revival now with defense-specific
programs.

The key benefit in system optimization of the shift-left trend
is the early visibility of system size, weight and power charac-
teristics. As for functional bugs, shift-left enables a choice of
where to draw boundaries, and subsequently move them. That
is, hardware-software tradeoff optimization is enabled for per-
formance, power, thermal and reliability. Hardware emulation,
a critical design automation technology required to make the
shift-left a reality, can also often be combined with commercial
virtual prototyping and “software-based emulation” based on
open-source technologies like QEMU and VirtualBox.

All emulators are not equal. Accurate SWAP tradeoffs begin
with accurate hardware representations. Register-transfer-level
languages — such as VHDL, Verilog and SystemVerilog — can
help with this. Hardware-software co-optimization methodolo-
gies require the accuracy of RTL hardware emulation.

To allow app development in a decoupled fashion, software-
based emulation using technologies like QEMU and Virtu-
alBox are often employed or provided in Android and iOS
software development kits. The techniques that design teams
choose to adopt depend on accuracy/performance/availability
tradeoffs. Typically, the higher in the software stack the soft-
ware to be developed resides, the more abstract the representa-
tions for development are.

The Defense Department’s adoption of DevOps is an excel-
lent first step, but it can’t be the last. It’s very tempting for
some within the department to consider the adaptation of
DevOps to be the easy fix to address their electronic system
development, sustainment and modernization issues.

However, while we always hope for the easy fix — the one
simple change that will erase a problem in a stroke — we all
know that few things in life work this way.

Instead, success requires making 100 small steps go right
— one after the other, no slipups, no goofs, everyone pitching
in. Furthermore, we know that to truly solve a problem, one
must tackle the root cause, not the effect. Hence, the rationale
for the famous Alan Kay quote, “People who are really serious
about software should make their own hardware.”

To meet the intent of the 2018 National Defense Strategy
goal for microelectronics, both hardware and software develop-
ment must be addressed.

And the major lesson from the successful commercial elec-
tronics systems companies is this: If you really want good soft-
ware for your system, you’ve got to have really good hardware
that’s been developed right alongside your software. ND

James S.B. Chew is group director, Frank Schirrmeister is senior group

director of solutions marketing, and Steve Carlson is director of aero-

space and defense solutions at Cadence Design Systems.

iS
tock illustration

