
Introduction: Security Essential Across Market Verticals

Computer systems and electronic infrastructure must be resilient in the face
of cyberattacks. These systems control many critical aspects of our daily lives
ranging from the cars we drive to banking infrastructure. Hardware is at the
root of the trust chain across all market verticals, as any digital system runs on
silicon. For most applications, security efforts focus mainly on software, with
the assumption that hardware is inherently trustworthy and does not open
the system to additional vulnerabilities. Recently, this assumption has been
challenged by several high-profile system-level exploits rooted in hardware
security deficiencies affecting aerospace and defense, automotive, datacenter,
and IoT verticals. In all these domains, there have been initiatives to address
security; however, designing and verifying secure systems remains a
challenging task.

Aerospace and defense

Multiple different Department of Defense (DoD) initiatives striving to develop
a portfolio of microelectronics protections and design requirements have been
put in place. For example, the DoD Microelectronics Innovation for National Security
and Economic Competitiveness (MINSEC) initiative has allocated $2 billion to
advance the United States’ competitive advantage in microelectronics with a
significant emphasis on hardware security.1 This and other initiatives emphasize
the importance of ensuring security and trustworthiness of microelectronics
used in military and aerospace applications; however, many challenges remain,
such as verifying the security of systems incorporating untrusted third-party IP.
Addressing these challenges requires new technologies to detect and prevent
security vulnerabilities.

A Complete System-Level Security
Verification Methodology
By Dr. Nicole Fern, Senior Hardware Security Engineer, Tortuga Logic; Steve Carlson, Director,
Aerospace and Solutions Architect, Cadence

Hardware is at the root of all digital systems, and security must be considered during the system-on-chip

(SoC) design and verification process. Verifying the security of an SoC design is challenging because of time

to market pressure and resource constraints. Resources allocated to the already time-consuming task of

functional verification must be diverted to security verification, which requires a significant shift in strategy

because security vulnerabilities often exploit unintended or unspecified functionality. Because of these

challenges, there is currently no systematic, scalable, and effective methodology for pre-silicon security

verification. Tortuga Logic and Cadence have collaborated to provide a security verification platform capable

of detecting system-level vulnerabilities requiring minimal disruption to existing functional flows.

Contents
Introduction: Security Essential Across
Market Verticals.................................1

Challenges in Building Secure Systems...2

A Scalable and Effective Security
Verification Methodology...................4

Conclusion...9

References..10

Automotive

Every function in all automobiles made within the last few years is governed by several processors, including the
braking system, steering, and cruise control. With increasing wireless connectivity, which has been shown to provide
remote attackers entry into the in-vehicle network2, trusting these processors to perform correctly and be resilient
against attacks is critical. In 2015, legislation was introduced in the US Senate (“SPY Car Act of 2015”)3, compelling
the NHTSA and FTC to set security standards for cars. An automotive cybersecurity standard, ISO/SAE 21434, is
currently under development to address the unique cybersecurity challenges in the automotive domain4. Verifying
proper isolation of internet-connected functionality, such as infotainment, from safety-critical operations, such
as steering and braking, is difficult with today’s hardware verification strategies, as evidenced by the recurring
security breaches affecting many automobile manufacturers.

Datacenter

Datacenter hardware is optimized for performance, is becoming more heterogenous, and is increasing in complexity.
These are all significant factors in the growing hardware security concerns. Datacenter hardware is shared between
many different customers, leading to concerns about isolation between applications. Traditionally, the operating system
provided acceptable guarantees about process isolation. Recent attacks, such as Spectre and Meltdown5, Foreshadow6,
and Spoiler7, however, demonstrate that a bug-free OS and bug-free software utilizing advanced hardware security
features, such as secure enclaves, can still be completely compromised. These vulnerabilities, stemming from unexpected
side-effects of processor performance features, lie at the hardware/software interface, requiring a shift in verification
strategy to detect.

Additionally, the heterogeneity of datacenter hardware is introducing huge concerns about the trust of hardware
components and their firmware. One such example is an attack capable of completely replacing firmware on a server
baseboard management controller (BMC), which has privileged access to all components on the server motherboard,
with malware8. The attack is possible because the hardware configuration of the communication bus connecting
the BMC to the host machine does not authenticate transactions originating from the host machine. There are multiple
initiatives, such as Microsoft’s Project Cerberus9 and Google’s OpenTitan10, which focus on building more standardization
around the security of server hardware and firmware infrastructure.

IoT

IoT devices continue to grow in popularity, despite numerous security incidents, such as the Mirai botnet11, BleedingBit12,
and Thangrycat13, which have demonstrated that the intense time-to-market pressure IoT providers face results in
prioritizing adding marketable features and lower product cost over security. What is clear is that IoT vendors need
a low-impact, easy-to-deploy, and effective security verification strategy to make sure these devices are secure.

Challenges in Building Secure Systems

There are numerous challenges in building secure systems. These include supply chain concerns, reverse engineering
and counterfeiting, and physical tampering and side-channel attacks.

Many designs include security features, but it is important to ensure that these are also secure features. Security
verification is difficult because of the fundamental asymmetry between attackers and defenders. An attacker only
has to discover and exploit a single vulnerability to achieve their goals, whereas the system design and verification
teams must anticipate and defend against the complete set of possible threats. Many security vulnerabilities hide
within modes of the design not exercised by typical system usage and go undetected during traditional functional
verification. Successful security verification requires a shift in thinking. Instead of focusing solely on whether the
design functions properly, the verification strategy needs to be centered around two questions:

•	 What information in my design needs to be protected?

•	 Where does that information flow and how is that information accessed?

This whitepaper focuses on the challenge faced earliest in the design lifecycle: ensuring the hardware
design sent to the fabrication facility is free of functional bugs and security vulnerabilities.

www.cadence.com 2

A Complete System-Level Security Verification Methodology

Current methodologies being deployed to address security are simulation/emulation-based verification, manual design
review, formal verification methods, and penetration testing. Applying one or all these methods is still insufficient
to address hardware security. Moreover, these existing approaches are time-consuming, hard to measure, and are
often a burden to engineering schedules. These approaches are at odds with the existing verification and development
process, in which engineering teams are focused on meeting schedules, while product security teams are focused
on building out unique and differentiated security products. This hurdle must be overcome to get a secure product
to market without introducing added costs or delaying products schedules.

There are several existing challenges that need to be addressed to effectively detect and prevent hardware vulnerabilities.

Challenge #1: Security policy capture

Security objectives are based around confidentiality, integrity, and the availability of design assets. These objectives are
difficult to formulate using existing tools which have no concept of information flow. Writing a directed SystemVerilog
test or assertion to verify the confidentiality of an encryption key is extremely time-consuming and difficult to compose.
It is possible to record the value of the key as it enters the encryption block, then check if that exact same value appears
at the output; but the key can go through an infinite number of simple transformations (for example, exclusive-or
with plaintext, bit shift, etc.) from which an attacker who can observe the output can easily recover the original key
value. The verification infrastructure knows the expected ciphertext value; however, other transformations that
correspond to leakage of intermediate states are difficult to enumerate and check for using directed tests and
SystemVerilog assertions. More complex indirect leakages through timing side-channels are impossible to detect
using value-based checkers. Similar difficulties are encountered when attempting to capture integrity and availability
properties in the verification infrastructure.

Currently, no existing tools used in simulation/emulation-based functional verification can track information flows
in the design. Labor-intensive negative tests must be developed to check security-specific corner cases for the highest
priority threats, but without the ability to track information flow in the design, negative testing is extremely limited.

Code reviews and penetration testing involve reasoning about information flows, but because these are manual processes,
they require an enormous amount of effort, which does not scale as the design size and complexity increases. Some
formal verification tools provide the capability to verify information flow properties, but these tools face scalability
issues and are unable to easily describe hardware flows while system software is executing.

Challenge #2: Security analysis must scale to SoC level

Security analysis must scale to system-on-chip (SoC) level to detect vulnerabilities arising from the configuration
and integration of security IP into the larger system. For example, leakage of sensitive information can occur if the
topology of an on-chip interconnect is configured incorrectly, or if there are errors in connecting security-critical
signals in the bus interface, such as privilege bits.

Formal verification tools and manual code reviews face scalability issues because of the exponential increase in design
complexity resulting from interactions between different functional blocks once they are integrated together. Penetration
testing is typically done post-silicon, and any integration errors detected at this time may be difficult to remedy with
firmware or software patches alone.

Among existing verification methodologies, simulation and emulation-based testing are the only techniques which
scale to SoC-level analysis and are used as the primary verification methodology of the semiconductor industry. Every
digital chip designed today has undergone a significant amount of simulation-based verification and before tapeout.
Emulation is also widely employed to perform SoC-level testing capable of analyzing firmware and the entire device
boot into a commodity OS, such as Linux. The increased capacity that emulation provides is critical for testing low-level
software and firmware that will ship with the chip. With respect to security, the main weakness of simulation- and
emulation-based verification is that security vulnerabilities often are unknowns, unrelated to core design function-
ality. Due to modern design complexity, it is impossible to exhaustively test the entire design during simulation or
emulation; therefore, some security vulnerabilities are likely to go undiscovered.

Challenge #3: Hardware and software must be analyzed together

To provide flexibility, hardware is designed to be configurable by software and firmware. Security functionality is no
exception. There are many hardware security features that are software-configurable either at boot time or dynamically
during system execution. Consider a memory protection unit (MPU), which implements access control policies for

www.cadence.com 3

A Complete System-Level Security Verification Methodology

different regions of memory. A specific platform can choose to use the MPU to partition the memory space into static
regions, dynamically change the regions and permissions, or not use the MPU at all. All choices are valid from the
perspective of pure hardware verification, but when considering verification of the entire system, software choices
regarding the programming of hardware features have a significant impact on security.

It is extremely important to analyze hardware behavior while the software is executing. Software misconfigurations
leading to security vulnerabilities cannot be detected by analyzing the software without a model of the hardware, and
analyzing only the hardware is insufficient to catch hardware usage errors as what constitutes a “misuse” of features
is context-dependent.

Penetration testing is performed on the entire system, which includes the firmware and software stack. Engineers on
the “red team” adopt the role of a potential attacker and perform penetration testing on the product to highlight areas
of the system susceptible to real-world attacks; engineers on the “blue team” harden the design against possible
red-team attacks. Penetration testing is an effective way to verify specific security-critical hardware/software flows,
such as secure boot; however, it is a manual process and is typically done post-silicon to better mimic the conditions
under which an attacker will attempt to infiltrate the system.

Visibility into the hardware is extremely limited, and the red team must develop a sophisticated-enough exploit to
cause observable problems in the system, such as a crash. A pre-silicon security verification methodology that uses
emulation platforms can still run a significant amount of system software but retains full visibility into the hardware
design, increasing the number of potential vulnerabilities detected for the same amount of manual effort needed
to write software penetration tests.

Formal verification methods explore the complete input and state space of the design when checking for security
policy violations, making these techniques an important part of the overall security verification strategy. Formal
methods are more complete than simulation- or emulation-based verification, but if the hardware is intended to
have multiple configurations controlled by software, where some of the configurations are expected to violate the
security policy and others do not, it often becomes prohibitively complex to constrain the formal model to the
relevant scenarios. Moreover, even if constraining the model is feasible, the analysis results do not guarantee that
the actual software shipped with the system, for example, boot code, correctly programs the silicon to behave
as originally expected.

Simulation- and emulation-based verification does not suffer the same plight because security rules can be verified,
while the boot code and firmware to be shipped with the system configure the hardware. Any rule violations occurring
will be true vulnerabilities, not false positives, and can be traced back to specific points in the software execution.
Capacity is also a limitation of formal tools, and for security rules spanning large portions of design functionality,
simulation or emulation is often the only option.

Challenge #4: Security verification must have low overhead

Security verification must not add significant overhead because functional verification is already a bottleneck in the
silicon design process. Verification resources include engineer hours spent developing test infrastructure and debugging
results, and computational resources to run simulations or formal tools. While the process of identifying security objectives
and designing and implementing a security architecture cannot be automated, there is tremendous opportunity to leverage
the existing effort expended on the functional verification task for security verification. Simulation and emulation
are already used heavily in the hardware design flow and scale to system-level hardware/software analysis and are
therefore ideal starting points for developing a scalable and effective security verification methodology.

A Scalable and Effective Security Verification Methodology

The challenges outlined in the previous section motivate the following requirements for a security verification methodology:

•	 Intuitive and efficient mechanisms for security policy specification

•	 A unified toolset for verifying functional and security properties throughout the design lifecycle capable of
scaling to system-level simulation/emulation to perform hardware/software security verification

•	 An environment that captures the progress of both the functional and security verification effort

To address these challenges, Tortuga Logic and Cadence have collaborated to provide a security verification platform
that meets the requirements previously mentioned. To address security policy specification, the platform leverages
Tortuga Logic’s Sentinel™ language, which enables security rules centered around the concepts of confidentiality, integrity,

www.cadence.com 4

A Complete System-Level Security Verification Methodology

and availability to be expressed in a straightforward manner. These rules can be verified using the same infrastructure
employed for pre-silicon functional verification. A comprehensive set of Cadence® products exist for functional
verification throughout the design lifecycle, and when used in concert with Tortuga Logic’s Radix-S and Radix-M
security verification software, the functional verification environment can be extended to perform security verification.

Radix-S and Radix-M are two security verification platforms that integrate with functional verification tools to identify
security vulnerabilities. Both employ patented information flow tracking technology exposed to the user using the
Sentinel language to verify security policies based around confidentiality, integrity, and availability. Radix-S is a software
package that scans a system’s hardware and software during the pre-silicon design and verification simulation stages
to identify and detect vulnerabilities. Radix-M, the second product in Tortuga Logic’s Radix series, performs firmware
security validation on full SoC designs by leveraging Cadence Palladium Z1™ Enterprise Emulation Platform.

Figure 1 gives an overview of this security verification flow, where blue elements and arrows denote industry-standard
components and processes necessary for pre-silicon functional verification, and gray illustrates how security verification
using Radix fits into this existing flow. Leveraging the existing functional verification environment for security verification
is essential to making security verification feasible under aggressive project schedules.

Figure 1: Tortuga Logic and Cadence flow for security verification

Security policy capture

Threat modeling is the process of identifying important data and design states, called assets, which must be protected
from an attacker. Assets include, for example, cryptographic key material, registers storing the current execution
privilege mode, firmware and boot ROM code, memory access control settings, debug interface, etc. Part of the
threat modeling process is reasoning about the environment the system will be deployed in, who is motivated to
attack the system, what their capabilities are, and what assets these attackers are interested in. This will guide the
process of security specification, which, ultimately, is expressed as a series of requirements for the hardware design
which must hold to protect design assets from adversaries.

Successful security policy specification and verification requires a shift in thinking. Instead of focusing solely on
whether the design functions properly, the verification strategy must be centered around two questions:

•	 What information in my design needs to be protected?

•	 Where does that information flow and how is that information accessed?

Security Threat
Models

Functional
Specification Software Debug

Xcelium
Palladium

RTL
Simulation/
Emulation

Hardware
Design

Hardware Debug

Radix

Security
Model Design

Security Model Generation Radix

Analysis of Results

Functional Verification
Infrastructure

Software/Firmware

Test Stimulus
Checkers

Assertions
Coverage Metrics

...

www.cadence.com 5

A Complete System-Level Security Verification Methodology

Security threat models are expressed in terms of Tortuga Logic’s Sentinel security verification rules. Radix uses the
design RTL along with the security rules to generate a security model (Verilog) that easily integrates into standard
functional verification environments without disruption to existing workflows. The security model is used to check
the Sentinel security rules during simulation and emulation and is used only during security verification analysis. The
security model does not become part of the design implementation nor impacts design area and performance.

The main difference between Sentinel rules and functional properties/assertions is that Sentinel rules easily capture
security policies centered around the security concepts of confidentiality, integrity, and availability due to the Security
Model’s unique ability to track information flows in the hardware design. These rules can be specified at any stage
in the design lifecycle and will evolve over time but can be re-used as the verification scope increases from block to
sub-system to the entire SoC.

Tortuga Logic tools provide a simple syntax for expressing information flow rules and our security model contains
patented technology to detect violations of these rules during RTL simulation and emulation. The basic structure of
a Sentinel rule is the following:

source =/=> destination

A Sentinel rule always consists of a source, the “no-flow” operator, =/=>, and a destination. The source and desti-
nation can be a single signal, or a set consisting of multiple signals. The rule will fail if information from any signal
in the source signal set flows to any signal in the destination signal set. In addition to the no-flow operator, several
keywords are provided to increase the expressiveness of the Sentinel language. For example, the “when” keyword
can be used to specify conditions that must be held for information flows from the source to be tracked.

System-level security verification using Tortuga Logic’s Radix-M and Cadence’s Palladium Z1
Enterprise Emulation Platform

Cadence provides a unified simulation and emulation environment ideal for efficient scaling to system-level functional
and security verification. Simulation and emulation differ in the size of the design analyzed and the functionality
covered during testing. Simulation primarily focuses on verifying hardware functionality at the block and subsystem
level and will include comprehensive directed and constrained random tests and checkers for all available hardware
features. A few tests may be run during simulation on the entire SoC to check for integration errors but running large
portions of the software stack, such as a secure boot flow, is often too time-consuming to run and debug in simulation.

The main use case of emulation is to verify the low-level software stack. Low-level software, such as boot code, firmware,
and device drivers, are responsible for configuring and interfacing with hardware and are commonly provided by the
chip vendor. It is important to identify bugs in the software stack early on, but even more critical to uncover bugs
in the hardware that manifest only under the complex sequences of software operations covered during emulation.

For security verification, the scope of security rules can vary from a single block (e.g., an encryption key should not
exit the boundary of the encryption module) to spanning the entire SoC (e.g., test and debug protections). However,
even for block-level rules, it is important to verify that the rule still holds while running the software to be shipped
with the system if any of the block configuration or operation is controlled or managed by software. Additionally,
security-critical functionality, such as the boot flow, must be verified using the actual device boot code.

Tortuga Logic’s Radix-S integrates seamlessly with the Cadence Xcelium™ Parallel Logic Simulator and Radix-M supports
the Cadence Palladium® Z1 Enterprise Emulation Platform, providing a comprehensive security verification solution.
Security objectives expressed using Sentinel can be verified using both existing hardware-centric tests from the
simulation infrastructure and software tests. This enables software-configurable hardware security features to be
vetted using the exact configuration programmed by the software shipped with the product.

Another important advantage of incorporating Radix into both simulation and emulation flows is that the security
rules can be used as a common language for security verification objectives between the security team and the teams
involved in simulation and emulation-based verification and low-level software development. This distributes the
security verification task more effectively and prevents disconnects between the various teams leading to exploitable
vulnerabilities going unnoticed.

www.cadence.com 6

A Complete System-Level Security Verification Methodology

Radix contains an interactive platform to aid in the visualization of information flow throughout the design, as seen
in Figure 2. This platform includes a waveform viewer that annotates the simulation trace with data about information
flows under specific security rules. If any rules fail during simulation, Radix also provides a visualization of a concrete
path through the design hierarchy showing information flow, causing a security rule violation. These analysis features
make exploring information flow in the design more efficient and are unique to Radix.

Figure 2: Radix analysis views enabling efficient analysis of security-relevant information flows within the design

Test stimulus for security rule verification and metrics

Prior sections have shown that Sentinel rules can be incorporated seamlessly into the existing verification infrastructure,
meaning all manual effort expended developing tests achieving high functional coverage can be re-used for security
rule verification. For simulation- and emulation-based security verification, an important question is:

•	 How effective are existing functional tests at uncovering potential security rule violations?

Security verification methodologies capable of addressing the complexities of system-level hardware/software
analysis are rooted in commercial best practices for functional verification. Metrics-driven verification (MDV) is
the process of creating an infrastructure in which progress is continuously tracked throughout various stages in
the design lifecycle against verification goals.

Figure 3: Cadence vManager platform

vPlan

vPlan

vPlan

Create Plans,
Link to TB and Specs

Analyze Metrics,
and Coverage

Launch Jobs, View
Results, Triage Data

Track Progress,
Submit Reports

Dashboards
Reports, Launch

vManager
Planning

Tracking

Regressions

Metrics / Views

VIP

ABVIP

AVIP

Xcelium Simulator

JasperGold Formal

Palladium XP / Z1

• Batch
• Data I/F
• ALM
• Custom

vManager
vAPI

vManager
Analysis

vManager = Verification Management

vManager
Regression

vManager
Tracking

vManager
Web

Coverage Files Log Files

API Planning Execution Data
Management

Tracking Data
Web Data Source
Saved Coverage
Regressions Data
User Defined Views
Used Defined Metrics /
Perspectives

www

www.cadence.com 7

A Complete System-Level Security Verification Methodology

A key component of metrics-driven verification is coverage metrics. Metrics are an important component for gauging
the progress, completeness, and effectiveness of the verification and validation effort. Good metrics provide quantifiable
feedback on how well the test stimulus exercises the design, and correlate with the probability of detecting bugs.
Achieving higher coverage means greater confidence in design correctness.

In functional verification, the desired modes to be checked are known, whereas events leading to violation of security
policy are often unknown and may involve complex interactions between different functional components, making
the development of security metrics difficult.

Currently, there are no widely adopted metrics for security verification. Just as good line/statement coverage is a
bare minimum for traditional verification, very high functional coverage is a bare minimum for security verification.
We have seen in practice that a comprehensive suite of functional tests, when combined with security-centered
negative tests, intelligent fuzzing, and constrained random testing, already activate undesired information flows in
the design. The limiting factor in the detection of these flows is the complexity of developing value-based checkers
with the ability to detect transformations of the source signal and indirect information flows.

	 Use of Tortuga Logic Sentinel rules alleviates the need for complex
checkers, and a set of security rules verified using Radix and a mature
functional test suite always results in significantly improved security
coverage due to the unique ability of Radix to detect direct and
indirect information flows.

Case Study: Identifying leakage of cryptographic key material using customer’s existing
functional test suite

Many designs contain hardware blocks which accelerate cryptographic algorithms. While an algorithm may be
secure in theory, the implementation, which includes the hardware and the software controlling the operation,
can result in the leakage of sensitive information.

A Tortuga Logic customer design contained a symmetric cipher block that could decrypt either an encrypted key or
encrypted data. The decrypted plaintext data can leave the block, but the key may not appear at block outputs in
any form. A block diagram similar to the customer’s architecture is shown in Figure 4 and illustrates the expected
and illegal flows.

The addition of the key decryption operational mode added a security feature but resulted in more complex control
logic, because there are various multiplexers and routing logic necessary to select from the various key and data
sources, and either save the output of the decryption block to the key storage or export it through the “plaintext”
output. Increased complexity often results in implementation errors that can lead to security vulnerabilities.

The illegal flow present in the customer’s logic is shown in red in Figure 4. This flow resulted from a quirk in the
implementation of the routing logic that packages the output of the cryptographic core into bus transactions. The
flows manifested under a specific sequence of software operations that occurred several times during the directed
functional tests provided by the customer for this block.

	 The illegal flow was not detected by the customer, despite comprehensive
functional testing of this cryptographic block, under which the flow did
exist for a handful of regression tests.

One reason the flow went undetected is that the flow added extra unintended functionality and did not impact
the functional operation of the decryption core. In the block diagram, the expected flow and usage of an encrypted
key are shown in green. The vulnerability adds an extra illegal flow, shown as a red arrow, but does not suppress
the expected flow and is not detected unless a special test were written with this specific vulnerability in mind.

www.cadence.com 8

A Complete System-Level Security Verification Methodology

Figure 4: Illegal key flow in customer design detected by Radix

Detecting this illegal flow using Radix only required writing a single simple security rule checking if the Encrypted
Key flows outside the module boundary:

Encrypted Key =/=> Plaintext

Without additional tests targeting key leakage vulnerabilities, this Sentinel security rule was able to detect the illegal
flow early on during a 4-week services engagement with the customer. This case study illustrates the power of combining
Radix with pre-existing functional verification environments.

Radix was able to quickly identify a vulnerability in part because the customer had a comprehensive set of regression
tests for the design block being analyzed. Because Radix is a simulation/emulation-based technique, the quality of
the test stimulus impacts the effectiveness of Radix in identifying security rule violations, making it critical to employ
best practices for functional verification.

Conclusion

Hardware is becoming more complex, customized, and ubiquitous. This is driving security features into hardware and
creating more attack vectors that exploit hardware vulnerabilities. The existence and exploitation of these hardware
vulnerabilities can increase the time to market, reduce chip vendor trust, and lead to costly lawsuits and chip recalls.
Ensuring hardware designs and the associated software that configures and uses hardware features are free from
vulnerabilities before tapeout is a challenging task. An effective security verification methodology must have low
overhead in terms of manual effort and compute resources, but also scale to SoC-level analysis and be able to
address both hardware and software together.

In this whitepaper, we have outlined a methodology for system-level security verification addressing these unique
challenges based around Tortuga Logic and Cadence products. Tortuga Logic’s Sentinel language provides an efficient
mechanism to express security policy centered around confidentiality, integrity, and availability of design assets. Tortuga
Logic’s Radix in combination with Cadence’s RTL simulation and emulation platforms enable efficient system-level
security verification by leveraging the existing verification environment to detect violations of security rules.

Plaintext

Output SelectInput Select

Decrypted Key

Encrypted Key

Encrypted Data

Cryptographic
Core

Expected Flow

Illegal Flow!

Key Storage

www.cadence.com 9

A Complete System-Level Security Verification Methodology

References

1.	http://www.nationaldefensemagazine.org/articles/2018/6/14/official-pentagon-investing-billions-into-microelectronics

2.	https://www.sandiegouniontribune.com/news/education/sdut-ucsd-professor-cyber-hacking-2015aug28- story.html

3.	https://www.congress.gov/bill/114th-congress/senate-bill/1806/all-info

4.	https://www.sans.org/cyber-security-summit/archives/file/summit-archive-1525889601.pdf

5.	https://meltdownattack.com/

6.	https://foreshadowattack.eu/

7.	https://arxiv.org/abs/1903.00446/

8.	https://www.theregister.co.uk/2019/01/24/bmc_pantsdown_bug/

9.	https://azure.microsoft.com/en-us/blog/microsofts-project-olympus-delivers-cloud-hardware-innovation-at-scale/

10.	https://cloud.google.com/blog/products/gcp/titan-in-depth-security-in-plaintext

11.	Antonakakis, Manos, et al. “Understanding the Mirai Botnet.” USENIX Security Symposium. 2017.

12.	https://go.armis.com/bleedingbit/

13.	https://thrangrycat.com/

Cadence software, hardware, and semiconductor IP enable electronic systems and semiconductor companies
to create the innovative end products that are transforming the way people live, work, and play. The
company’s Intelligent System Design strategy helps customers develop differentiated products—from
chips to boards to intelligent systems. www.cadence.com
© 2019 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and the other Cadence marks found at
www.cadence.com/go/trademarks are trademarks or registered trademarks of Cadence Design Systems, Inc. All other trademarks are the
property of their respective owners. 13004 08/19 MC/RA/PDF

A Complete System-Level Security Verification Methodology

	Introduction: Security Essential Across Market Verticals
	Challenges in Building Secure Systems
	A Scalable and Effective Security Verification Methodology
	Conclusion
	References

