
TECHNICAL BRIEF

Introduction
As an aerospace or defense program manager, you have
your work cut out for you—with expert planning bounded
by fixed timetables and budgets, the execution of a
defense project is well controlled. Experience from
previous programs, carefully developed specifications, and
anticipated challenges are combined to define the project
constraints—but that assumes everything runs as
planned. Even the “best-laid plans of mice and men” are
subject to the unexpected, and when something
unforeseen derails the carefully laid timetables of a
project, you still must be ready to deliver the program, or
risk having to go back for more budget.

Cadence can help. The tools you’re already using have a
variety of features that are easy to enable and can drasti-
cally improve the speed at which you finish verification as
measured by complete coverage. If your verification simply
takes less time, that’s more resources you have available
for the setbacks that any program can hit; it’s time that
“buffers” your program against overrun. Commercial
companies have deployed these best practices to buffer
their development programs and they’re well-suited in the
aerospace and defense context, too.

These features exist across the Cadence® Verification
Suite, and this paper will highlight a few of the highest ROI
ones you can efficiently put into practice. The Cadence
Xcelium™ Parallel Logic Simulator has three features that
you can get good use from—the new save and restart
functionality, dynamic test reload (DTR), and parallel and

Improving Aerospace and Defense Program
Confidence with Commercial Best Practices
from the Cadence Verification Suite
Getting the highest ROI within your running programs

incremental elaboration. For managing the verification
process, there’s the Cadence Interconnect Workbench and
Cadence vManager™ Metric-Driven Signoff Platform’s
runner/triage and planning capabilities. For best practices
in formal analysis and verification, there are the Cadence
JasperGold® Coverage Unreachability (UNR) and Superlint
Apps, available as a part of the JasperGold Formal
Verification Suite. These features combine to enable you
to pursue and reach 100% coverage faster than ever
before, creating that buffer program managers want to
assure on-time, on-budget, and on-spec delivery.

Xcelium Simulation
The Xcelium Parallel Logic Simulator offers a wide variety
of ways to increase program confidence. The flexibility of
the multi-purpose Xcelium simulator comes into play
here—no matter what you’re doing, there’s probably a
setting or a feature you can enable to get better results
than what you have. For all projects, the Xcelium simula-
tor’s save and restart functionality can vastly improve
turnaround time by slashing the amount of time wasted on
re-running long simulations. The dynamic test reload
feature can provide productivity improvements by
removing the need to re-run the design under test (DUT)
initialization sequences between test runs. The parallel
and incremental elaboration feature allows you to avoid
re-elaborating your testbench between test cases,
dramatically speeding up turnaround time, especially for
large designs.

Improving Aerospace and Defense Program Confidence with Commercial Best Practices from the Cadence Verification Suite

2www.cadence.com

Save and Restart

The new save and restart functionality in the Xcelium
simulator is a vast improvement over the older approaches.
You can begin using the new save and restart functionality
with a simple run-time switch, -process_save, which is
usable with xrun, xmelab, or xmsim commands. Once this is
done, a snapshot with save and restart functionality is
created.

There are two kinds of restarts that can be done with this
system: cold and warm. A cold restart shuts the simulator
down completely before restarting, so you can change the
simulator invocation settings, the name of snapshot,
randomization seeds, and so on. A warm restart doesn’t
completely reinvoke the simulator—the current simulation
run will go back to the restart time. You will not be able to
change any invocation settings; however it is still possible
to reseed (change the random seeds of) the design. You
can perform a warm restart by simply using the Tcl restart
command—a warm restart will be done automatically.
Alternatively, a warm restart can be done from the Xcelium
command line, using xcelium>restart<snapshot _
name>.

This video on the process-based Save and Restart feature
in the Xcelium simulator demonstrates usage of this feature
in cold as well as warm restart in simulations (login
required)

Dynamic Test Reload

Dynamic test reload (DTR) is another new feature in the
Xcelium simulator that can improve your ROI. DTR allows
you to add a new SystemVerilog package to an existing
simulation snapshot, such as one produced through a save,
without requiring a full build of the design and run up to the
interesting simulation time. It is most commonly used to
replace UVM sequences without having to re-elaborate and
restart the simulation, greatly speeding the time to develop
and debug testbenches. It can also be used to create an
“initial snapshot” of the Interconnect Workbench
environment post-DUT initialization, removing the need to
re-do that time-costly process every time you want to try
some new tests to verify your interconnect. This requires

some simple modification of your Interconnect Workbench
environment.

For specific information on how to modify your Interconnect
Workbench environment to enable DTR, see the “Creating
Dynamic Tests with System Verilog” resource webpage
(login required).

Parallel and Incremental Elaboration

The Xcelium simulator’s parallel and incremental elaboration
feature can even further improve ROI by shortening the
time it takes to re-elaborate a design so that you can
complete your debug iterations faster. To do this, a testcase
is split into two parts: one or more primary snapshot(s),
which contains code that is stable and doesn’t need to be
changed, and an incremental snapshot, which contains the
code that changes often. In simpler terms, the DUT is
captured in the primary snapshot, while the testbench is in
the incremental snapshot. The more code that’s compiled in
the primary snapshot, the more time you will save on
re-elaboration.

Parallel and incremental elaboration allows large designs to
share the elaboration task with the verification environment.
For a team developing tests, new design blocks, or
regression environments executing a large set of parallel
tests, parallel and incremental elaboration allows you to
build the most time-costly part of the design up-front and
only once. The Xcelium simulator has the tools to take
advantage of this feature—the simplest way being to use
the single-step xrun flow, which keeps the primary
snapshot-building and final simulation snapshot-building in
a single step. It can also be used with a multi-step xrun/
xmelab flow to allow for the sharing of primary snapshots
between users. If you use parallel and incremental elabo-
ration in this way, be advised that you should use the cds.
lib/hdl.var library mechanism along with System Verilog or
VHDL configurations to manage the locations of your
primary snapshots and to choose which snapshots will be
used during elaboration.

To learn more about parallel and incremental elaboration by
visiting the Parallel Partitioning section of the Multi-
Snapshot Incremental Elaboration manual (login required).

Without Save/Restart With Save/Restart

1

2

3

1,000

4-hour init/boot ~ 20 min. test

Save

Regression CompleteRegression Complete

Restart Restart Restart.

Figure 1: A comparison between the old and new save and restart features.

https://support.cadence.com/apex/techpubDocViewerPage?xmlName=sysverilog.xml&title=SystemVerilog%20Reference%20--%20Dynamic%20Test%20Reload%20-%20%20Creating%20Dynamic%20Tests%20with%20SystemVerilog%20&hash=DynamicTestReload-CreatingDynamicTestswithSystemVerilog&c_version=19.09&path=sysverilog/sysverilog19.09/Dynamic_Test_Reload.html#DynamicTestReload-CreatingDynamicTestswithSystemVerilog
https://support.cadence.com/apex/techpubDocViewerPage?xmlName=sysverilog.xml&title=SystemVerilog%20Reference%20--%20Dynamic%20Test%20Reload%20-%20%20Creating%20Dynamic%20Tests%20with%20SystemVerilog%20&hash=DynamicTestReload-CreatingDynamicTestswithSystemVerilog&c_version=19.09&path=sysverilog/sysverilog19.09/Dynamic_Test_Reload.html#DynamicTestReload-CreatingDynamicTestswithSystemVerilog
https://support.cadence.com/apex/techpubDocViewerPage?xmlName=incelab.xml&title=Multi-Snapshot+Incremental+Elaboration+--+Partitioning+-++Parallel+Partitioning+&hash=Partitioning-57709ParallelPartitioning&c_version=20.03&path=IncElab%2FIncElab20.03%2FPartitioning.html#Partitioning-57709ParallelPartitioning
https://support.cadence.com/apex/techpubDocViewerPage?xmlName=incelab.xml&title=Multi-Snapshot+Incremental+Elaboration+--+Partitioning+-++Parallel+Partitioning+&hash=Partitioning-57709ParallelPartitioning&c_version=20.03&path=IncElab%2FIncElab20.03%2FPartitioning.html#Partitioning-57709ParallelPartitioning

Improving Aerospace and Defense Program Confidence with Commercial Best Practices from the Cadence Verification Suite

3www.cadence.com

Interconnect Workbench
The Cadence Interconnect Workbench is a tool you can use
to automate your interconnect testing. Using the IP-XACT
or CSV description of an interconnect system’s RTL, the
Interconnect Workbench can create either a UVM e or
SystemVerilog testbench with all the necessary verification
IP and the scoreboard. An Interconnect Workbench-
generated testbench supports component, subsystem, and
full SoC-level interconnects. The testbench automation
capability alone can shave days off your schedule, but the
Interconnect Workbench can also generate a few sets of
tests to give you a solid starting point for verification and
performance analysis, thus providing a significant produc-
tivity boost.

The Interconnect Workbench also includes a performance
analyzer (IPA) tool (Figure 2), which produces metrics and
graphics to help you easily understand how your tests are
performing against a plan.

The Interconnect Workbench’s testbench automation
capabilities also work on the Cadence Palladium® series of
emulation and verification platforms. Unlike the simulation
flows for Interconnect Workbench, the Palladium system’s
Interconnect Validator (IVD) runs as a separate step and
performs its checks outside the Palladium box, then loads
its logs into the IPA afterward.

For more information on how the Cadence Interconnect
Workbench can be set up and used on both simulation and
emulation flows, see the “Interconnect Workbench User
Guide” (login required).

JasperGold Formal Verification
The JasperGold Formal Verification Platform has several
features (apps) that should be used to get the most out of
your time. Among these, the JasperGold Coverage
Unreachability (UNR) App and Superlint App are easily

applicable to all use cases, are trivial to enable and use, and
can provide significant improvements in and debug
turnaround time, respectively.

JasperGold UNR App

At a certain point in the verification process, adding tests to
your test suite doesn’t seem to generate any further useful
coverage. The JasperGold UNR App addresses this problem
by working with your test coverage database to determine
if the code that has not yet been tested has any route to be
accessed. By determining coverage for >99% of the FPGA
or SoC, the JasperGold UNR App can help you avoid
countless hours running around in circles looking for that
golden test that will cover the uncoverable.

Additionally, the JasperGold UNR App is extremely easy to
enable. It’s an automated flow, so it can be used even by
engineers with little formal knowledge, and it works
independently of a testbench methodology. All you need to
do is use xrun -unr –jg –jgsynthesis –R –covdb
-coverage all, and the JasperGold UNR App will output
a database showing where coverage holes are. As shown in
Figure 3, the JasperGold UNR App is best run after 50-80%
coverage (design-dependent) is reached to reduce the time
needed for the analysis.

RTL Design

Testbench Development IP Verification

RTL Refinement

Integration

Designer

Verification
Engineer

Project
Start

RTL Partially
Available

Testbench
Ready

Feature/
Protocol
Finished

Verification
Closure

System
Tapeout

System
Integrator

Coverage
Unreachability

Analysis

Figure 3: When should you use the JasperGold UNR App?

For further information, check the “JasperGold Coverage
Unreachability App User Guide” (login required).

JasperGold Superlint App

The JasperGold platform’s linting application, the
JasperGold Superlint App, combines RTL syntax-error
finding and structural linting with automatic formal
behavior analysis, finds coding style violations, sources of
bugs, circuit structure violations, and potential sources of
bugs. Reports generated by the Superlint App can prove
quite useful in the debugging process and require no

Graphical OverviewRuns Filter

Path Filer

Figure 2: The Performance Analyzer GUI

https://support.cadence.com/apex/techpubDocViewerPage?xmlName=iwb_user_guide.xml&title=Interconnect%20Workbench%20User%20Guide%20--%20Usage%20-%20Usage&hash=&c_version=11.3&path=iwb_user_guide/iwb_user_guide11.3/Usage.html
https://support.cadence.com/apex/techpubDocViewerPage?xmlName=iwb_user_guide.xml&title=Interconnect%20Workbench%20User%20Guide%20--%20Usage%20-%20Usage&hash=&c_version=11.3&path=iwb_user_guide/iwb_user_guide11.3/Usage.html
https://support.cadence.com/apex/techpubDocViewerPage?xmlName=unr_user_guide.xml&title=JasperGold%20Coverage%20Unreachability%20App%20User%20Guide%20--%20Preface%20-%20Conventions%20Used%20in%20Jasper%20Documents&hash=925177&c_version=2018.03&path=UNR_user_guide/UNR_user_guide2018.03/preface.html#925177
https://support.cadence.com/apex/techpubDocViewerPage?xmlName=unr_user_guide.xml&title=JasperGold%20Coverage%20Unreachability%20App%20User%20Guide%20--%20Preface%20-%20Conventions%20Used%20in%20Jasper%20Documents&hash=925177&c_version=2018.03&path=UNR_user_guide/UNR_user_guide2018.03/preface.html#925177

Improving Aerospace and Defense Program Confidence with Commercial Best Practices from the Cadence Verification Suite

4www.cadence.com

testbench creation.

Starting the Superlint App is simple. First execute this
command: %jg -superlint smc.tcl, then make sure any
RTL files you need for compilation are in the rtl directory.
This will start the Superlint GUI. From the GUI, you can
select any checks you want to run, configure any options,
and run the software.

For more information, you can download the “Introduction
to JasperGold Superlint App” Rapid Adoption Kit (RAK)
(login required)—this will teach you in further detail how to
start using the Superlint App.

vManager Platform
The vManager Metric-Driven Signoff Platform is a powerful
management tool for your verification flow with the ability
to vastly improve your verification experience, but the idea
of adopting a comprehensive metric-driven verification
methodology may be daunting to users constrained by an
existing program. The vManager platform’s ability to track
verification progress, plan flows, and provide pertinent
metrics has been refined over more than twelve years of
program experience. Avoiding the features the vManager
platform has to offer out of a concern that it’s an all-or-
nothing adoption means leaving a lot of useful tools on the
table.

The vManager platform is designed to drive verification
improvements through coverage and metrics (Figure 4). It
can automate test generation with directed randomization
and collect metrics on what verification has been done for
future use. These metrics are used to further generate
tests, easing the test-writing time bottleneck.

These improvements start with a vPlan, a set of coverage
and analysis goals that you can outline in the vManager
tool, allowing you to coherently set up and plan what you
want your tests to target and to directly measure how those
tests are doing by having a set of guidelines to compare to.
The vPlan can start out as simple as making sure that all
the tests that need to run have run successfully in a given
regression.

The vManager platform is not difficult to start using with
simulation. Cadence can provide vManager Deployment kits
to ease the setup. Since the vManager platform is a part of
the Cadence Verification Suite, no changes to existing tools
are required—all of your Cadence tools will work with the
vManager platform right out of the box. Using the vManager
platform with multiple verification engines and compre-
hensive vPlans requires a bit more bring-up time and may
be better suited to new programs but applying it in this way
can vastly reduce the overall program time for verification
and improve both quality and predictability.

For more information, see the vManager User Guide (login
required).

Confidence in 100% Coverage
Each verification feature in this paper will enable you to
execute more verification, but what you really need is a
measurement system to translate “more verification” to
“increased program confidence”. This can be done through
coverage measurement, but a program needs a coverage
goal and “verification contract” to measure the
improvement in confidence.

Five coverage goals are identified in Figure 5 and ordered
from more subjective to more objective. “Executed Code” is
a more subjective goal because a program can achieve
100% code coverage with some failing tests. “Successfully
Tested” is more objective than “Executed Code” because
the goal is only achieved with 100% coverage and 100%
successfully passing tests. Note that, in both cases, the
completion target is 100%. This is possible because the
program and customer start with a “verification contract”
that can be clearly measured. “Run all the code (Executed
Code) and assure that all tests are passing (Successfully
Tested)” is an example of a verification contract. The
vManager platform can then gather metrics, including
waivers, toward 100% completion of these targets.
Considering the “Annotated vPlan” goal, the agreement
focuses on functional requirements and uses functional
coverage, code coverage, test success, and other metrics
to measure 100% completion of the targets. You can also
use multiple Cadence engines, including the Xcelium,
JasperGold, and Palladium platforms, and the Protium™
Prototyping Platform, to generate these metrics.

Regardless of where the program is focused on the
coverage goals, the goal must be 100% achieved. As the
program progresses, questions regarding progress toward
that goal become increasingly urgent as the “verification
complete” milestone approaches. By combining the
Xcelium, JasperGold, and Interconnect Workbench features
with the metrics tracking/reporting capability of the
vManager platform, your programs can increase the
amount of verification running within the allocated
resources of the program and/or prioritize the verification
with waivers applied to lower priority items with the

vPlan Metrics

Figure 4: vManager metrics

https://support.cadence.com/apex/ArticleAttachmentPortal?id=a1O0V000006Aia8UAC&pageName=ArticleContent
https://support.cadence.com/apex/ArticleAttachmentPortal?id=a1O0V000006Aia8UAC&pageName=ArticleContent
https://support.cadence.com/apex/techpubDocViewerPage?xmlName=vmanager_ug.xml&title=Cadence%20vManager%20User%20Guide%20--%20vManager%20Overview%20-%20%20Help%20&hash=vManagerOverview-17586Help&c_version=19.03&path=vManager_ug/vManager_ug19.03__/vManager_Overview.html#vManagerOverview-17586Help

Improving Aerospace and Defense Program Confidence with Commercial Best Practices from the Cadence Verification Suite

Cadence is a pivotal leader in electronic design and computational expertise, using its Intelligent
System Design strategy to turn design concepts into reality. Cadence customers are the world’s
most creative and innovative companies, delivering extraordinary electronic products from chips
to boards to systems for the most dynamic market applications. www.cadence.com

© 2020 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and the other Cadence marks
found at www.cadence.com/go/trademarks are trademarks or registered trademarks of Cadence Design Systems, Inc. All other
trademarks are the property of their respective owners. 13960 03/20 SA/DM/PDF

vManager platform continuously measuring progress and
increasing confidence in achieving 100% coverage at the
“verification complete” milestone.

Conclusion
Across Cadence’s verification suite of tools, there are ways
to improve program confidence by enabling you to make the
most of your current tools or to learn new tools with a short
learning curve, and using them effectively can bring huge
improvements to your quality and verification signoff with
minimal bring-up time. While this is not an all-inclusive list
of everything you can do to speed up or improve the quality
of your verification, this is a selection of options proven

Continuous Requirements
Verification

 Continuously sync spec ↔ vPlan collecting functional+code+test coverage

 100% coverage tracking to changes in requirements

Metric-Driven
Annotated vPlan

 Map vPlan features to functional+code+test coverage metrics

 100% coverage with single/multi-engine annotation

Coverage Driven
 Rely on only raw functional+code+test coverage metrics

 100% coverage with manual annotation

Successfully Tested
 Automatically track test pass/fail metrics

 100% coverage assuring all tests pass

Executed Code
 Automatically track execution of hardware code

 100% coverage may occur with some failing tests

More Objective

More Subjective

Figure 5: Coverage goals and definitions

in commercial best practices that are the easiest to
begin using.

In addition, the Cadence Verification Suite offers a more
comprehensive array of of tools and technologies including
the Palladium platform for hardware/software emulation,
the Protium platform for FPGA prototyping and software
verification, and the Perspec™ System Verifier for portible
stimulus throughout the verification flow including the
manufactured system.

With the options enabled and features in use as detailed in
this paper, you can improve schedule confidence within
running programs as well as improve your associated
budget and personnel constraints.

Smartest
Apps

Fastest
Engines

Formal
JasperGold

Simulation
Xcelium

Emulation
Palladium

Prototyping
Protium

Smart Verification Management
vManager-Perspec–Specman–VIP–Indago

X86 Server Custom
Processor

FPGA
Most Choice
of Compute X86 Server

Concept Product

Figure 6: The Cadence Verification Suite

