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Problem: Variation in Photonic 
Process/Device/Circuits

Solution Approach: Design for Manufacturability

 Requires understanding of variations

 Research focus:  – process variations: measurement & modeling

– photonic device & circuit: impact analysis

– mitigation: design optimization & robust design

 Design for Manufacturability (DFM) necessary to achieve photonic circuit and 

system specifications in face of above variations

(structure or material
changes to devices 
and circuits due to 

operation)

Reliability Environmental

Temperature

Power

Data
Sensitivity

Noise

Process

Tool (lot-to-lot, 
wafer-to-wafer)

Intradie
(within-chip)

Interdie
(chip-to-chip)

(as-fabricated structure
or material deviations)

(operating
conditions)

 Variation in photonic ICs arise with scaling & complexity…



Decomposition/Modeling of Variation
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Each device on each chip is subject to a 
combination of variations:

 𝑃0: nominal parameter value

 𝑃𝑊 𝑥, 𝑦 : wafer-level variation

 Position or spatially dependent

 Sometimes approximated as 𝑃𝑊 𝑖, 𝑗
offset for each chip (the same for all 
devices on that chip) based on worst-
case corners or Gaussian model

 𝑃𝐷 𝑥, 𝑦 : chip- or die-level variation

 Within-die spatially dependent

 Systematic (highly repeatable) layout 
dependent models for within-die pattern

 Separation-distance correlated random 
models also sometimes used

 𝑃𝐼 𝑥, 𝑦 : wafer-die interaction

 Usually ignored (folded into residual)

 𝑃𝜖: residuals/random variation

 Typically modeled as a Gaussian random 
variable, different for each device

𝑃 = 𝑃0 + 𝑃𝑊 𝑥, 𝑦 + 𝑃𝐷 𝑥, 𝑦 + 𝑃𝐼 𝑥, 𝑦 + 𝑃𝜖



Photonics Process Variation: 
Examples and CAD/DFM Approaches

 Wafer-Scale Variations

 Wafer-scale spatial decomposition and modeling

 Sensitivity analysis, DOE, and RSM

 Worst case/corner analysis of device/circuit impact

 Chip-Scale Variations

 Separation distance correlation models

 Physical or empirical models of layout pattern dependencies

 Dummy fill approaches to minimize layout pattern effects

 Random, Correlated, and Combined Variations

 Statistical models of variation sources

 Monte Carlo and sampling based simulation

 Design centering and robust design
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Spatial Decomposition of Process Variations –
Silicon pin Microring Modulators

5R. Wu et al., OIC2016. (UCSB/HP)

Approach: 

 Decompose wafer spatial variation into 
leveling and radial components

 Use those patterns to reason about 
process variation sources

Device:
a) Cross section of 5 um radius microring

250nm/50nm Si rib waveguide
b) Planar view of Si pin microring modulator 

and local heater
c) Small signal pin diode circuit model

Problem: what are the wafer-scale variations 
that the ring and heater are sensitive to?

Results: 

 RD measured/fit for 61 die; perform
spatial decomposition of variations:

 16% leveling; 40% radial; 36% other

 Suggests

 Leveling variation due to waveguide 
width variation (litho)

 Radial variation due to SOI thickness 
and dry etch depth variation



Sensitivity Analysis, DOE and RSM
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Sensitivity Analysis

 “One variable at a 
time” simulations or 
experiments

 Provides nominal 
response, and relative 
impact of inputs: 
𝒚0,

𝑑𝒚

𝑑𝑥1
, and 

𝑑𝒚

𝑑𝑥2
but not 

interactions

𝑥1

𝑥2

𝑥2

𝑦

𝑥1

𝑦

𝑥1

𝑥2

𝑥1

𝑥2

Design of Experiments (DOE)

 Multifactor simulations or experiments that are better able 
to map/explore design spaces

 Identification and modeling of interactions

 Typical DOEs:

 Corner points + center point: interactions; (non)linearity

 Central composite: polynomial response surface models (RSM)

 Latin hypercube sampling (LHS): control number of simulations 
in high dimensional cases

𝑥1

𝑦

𝑥2 high

𝑥2 low



Wafer-Level Silicon Layer Thickness Nonuniformity
Impact on Microdisk Resonators

7W. A. Zortman et al., paper IMC5, OSA/IPNRA/NLO/SL 2009. (Sandia)

Process: 150 mm SOI wafers with 260 nm silicon

Device: 6 um diameter microdisk resonator 
coupled to a ~370 nm wide Si waveguide with gap 
of ~330 nm between waveguide and disk. 
16 replicates at different wafer locations.

(a) Measured variation in resonant frequency for the 
TE mode. (b) Simulated deviation in diameter and 
thickness from FE modesolver required to produce 
the measured frequency variations.

Calculated contributions of thickness and 
diameter variation to the (a) TE and (b) TM 
resonances.

Inferred thickness variations consistent with 
expected Si layer thickness range of ±4 nm.

 Approach: sensitivity simulations to 
infer linewidth (diameter) and 
thickness variation contributions

 Result: Thickness non-uniformity on 
the SOI silicon wafer determined to 
be the driving factor for deviation in 
the devices tested



Worst-Case/Corner Analysis
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Goal: Verify/achieve design across range 
of die-to-die variations

Classic Approach: 
“Worse-Case/Corner Analysis”

 For each design/process parameter, 
consider corners at e.g., ±2𝜎 or ±3𝜎

 For n parameters, have 2n combinations of 
corners to check

 But if parameters are correlated then some 
combined univariate corners will never 
occur (joint pdf extremely small)

 Could consider 2n “multivariate corners” in 
orthogonalized n-dimensional space

 Requires knowing correlation structure

 Alternative: if know correlation structure, 
sampling methods are possible

 Corner analysis difficult to use for within-
die variation

 If c is number of components in circuit, 
then 2nc corner simulations!

𝑥1

𝑥
2



Wafer Level Variation – Waveguide Loss
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 Observations:

 Spatial correlation in losses: chip-to-chip and (smaller) within-chip

Optical propagation loss distributions with std. dev. of ~0.2 dB/cm; 
bound or provide range in losses: ~1.6 to 2.4 dB, ~0.6 to 1.2 dB

A. E.-J. Lim et al., J. Sel. Topics in Q. Electronics, vol. 20, no. 4, July/Aug. 2014. (IME)

 Wafer-level map of (a) Si channel waveguide and (b) Si rib waveguide 
losses from a Si passives pilot wafer fabricated in GF. The WG width was 
500 nm and slab thickness for the rib WG was 90 nm. Average WG loss 
was ~2 and ~0.8 dB/cm for Si channel and Si rib WG, respectively. A total 
of 52 dies were measured.



Wafer Level Variation – Ge Photodetectors
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a) Device capacitance at -1V bias plotted 
in a wafer map showing uniformity with 
mean capacitance of 28 ± 0.28 fF for 
8x25 um photodetector.

b) The device capacitance scales linearly 
with detector area.

 Statistical distribution for waveguided
vertical pin Ge photodetector dark 
current at -1V reverse bias, at different 
device dimensions. 52 dies measured 
on wafer.

A. E.-J. Lim et al., J. Sel. Topics in Q. Electronics, vol. 20, no. 4, July/Aug. 2014. (IME)



Photonics Process Variation: 
Examples and CAD/DFM Approaches

 Wafer-Scale Variations

 Wafer-scale spatial decomposition and modeling

 Sensitivity analysis, DOE, and RSM

 Worst case/corner analysis of device/circuit impact

 Chip-Scale Variations

 Separation distance correlation models

 Physical or empirical models of layout pattern dependencies

 Dummy fill approaches to minimize layout pattern effects

 Random, Correlated, and Combined Variations

 Statistical models of variation sources

 Monte Carlo and sampling based simulation

 Design centering and robust design

11



12

Within-Chip Spatial Variations

 Spectrum of spatial variation signatures or dependencies

 May have very different impact on photonic devices and circuits:

 E.g. random variations in long paths may “average out”

 Correlated variations can help or hurt

– “common mode” offsets which don’t affect PIC

– Or, accumulation of correlated variation

Uncorrelated
Highly

Correlated

Systematic Random

• random dopant 
fluctuations

• distance-dependent
(correlation length)

cross-die trends
(wafer-level non-uniformity)

• regional effects:
pattern density

• neighbor effects
(e.g. lithography)
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Within-Chip Spatial Variations

 Multiple spatial variation axes depending on physical source

 Differing impact on photonic devices and circuits:

 Systematic vs. Random  Die-to-die predictability

– Same variation for all chips or variation different for each chip

 Spatially Correlated vs. Uncorrelated

– “Common mode” offsets which don’t affect circuit 

– Averaging of uncorrelated variation in long paths

– Or accumulation of correlated variation

(x, y)
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Waveguide Sidewall Roughness

14K. K. Lee et al., Optics Letters, vol. 26, no. 23, Dec. 2001. (MIT/UWM)

a) Fabrication steps of oxidation smoothing 
waveguides. The additional steps that the 
waveguides go through after they are 
patterned by photolithography and RIE 
are shown.

c. Resulting waveguide transmission 
losses depend on sidewall 
roughness

 Scattering loss 𝛼𝑆 related 
to rms roughness 𝜎:

b) AFM images of top and sidewall of 
waveguides. Conventional waveguide 
has rms 𝜎 = 10 nm and correlation 
length Lc = 50 nm. Oxidation smoothed 
waveguide has rms 𝜎 = 2 nm and Lc = 
50 nm.

 Measured transmission losses

 Losses reduced from 32 dB/cm to 
0.8 dB/cm for single mode 
waveguide width of 500 nm.
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Example from IC World –
Variation Test Circuits: VT

 Take advantage of exponential dependence 
of VT in sub-threshold 

 Measure currents in sub-threshold regime 
and compute ∆VT:

 Surprising result: No statistically significant 
spatial correlation or dependence on 
separation distance D

Vt Test Chip Die Photo
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Effect of Spatial Separation Distance
on Resonator Wavelength Mismatch

16L. Chrostowski et al., paper Th2A.37, OFC 2014. (UBC)

Device:

 371 identical racetrack resonators (12 um radius) 
on a 16x9 mm chip.

 Devices between 60 um and 18 mm apart

 68,635 different separation distance combinations

Results: 

 Strong dependence of difference in resonator wavelength ҧ𝜆ring on separation distance

 Linear dependence for d < 5 mm: ҧ𝜆ring = 0.47
𝑛𝑚

𝑚𝑚
∙ 𝑑 + 0.35𝑛𝑚

Conclusion: 

strong spatial 

correlation in 

sources of 

resonator 

variation



Wafer-Level vs. Die-Level Variation in 
Silicon Waveguides and Devices (1)

17S. K. Selvaraja et al., IEEE J. Sel. Topics in Q. Electron., vol. 16, no. 1, Jan./Feb. 2010. (Ghent/IMEC)

Device:

 Waveguides at 9 locations within each die

 Multiple die per wafer

Process:

 200 mm SOI, 193 nm step and scan

Wafer Scale Variation: (a) Photoresist linewidth after litho; (b) Silicon linewidth after dry etch

Conclusions:

 Little wafer-scale 

lithography variation

 Circular post-etch 

variation attributed to 

chamber scale etch-

rate variation due to 

plasma nonuniformity



Wafer-Level vs. Die-Level Variation in 
Silicon Waveguides and Devices (2)

18
S. K. Selvaraja et al., IEEE J. Sel. Topics in Q. Electron., vol. 16, no. 1, Jan./Feb. 2010. (Ghent/IMEC)

Chip Scale Process Variation: Linewidth 
uniformity within a die after lithography, after 
etch:

Chip Scale Device Variation: Separation 
distance dependence in ring, MZI and AWG 
variation:

17 AWGs on 

same die



wafer in 

cross-sectiondevice/‘die’

spatial variation

wafer/chamber-scaleacross-chip and 

between-chip

ion and 

radical flux 

distribution

competition for 

reactants; diffusion

aspect ratio-

dependent etching 

(ARDE)

wafer-level 

‘loading’

feature-scale

F
X
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Process Variation –
Feature/Chip/Wafer-Scale Models of Plasma Etch

Boning (MIT)



Plasma Etch: Layout Pattern-Dependent Variation

Experimental results using wafers with

• Average pattern density 5% throughout

• But density localized to differing extents

Boning (MIT)
20



Plasma Etch: Chamber-Scale Variation

1%

5%

20%

70%

95%

1

81

test patterns

position 

index

pattern 

density

Boning (MIT)
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Predictive Models for Etch Depth/Width Variation

A

B

Reactant + 

Ion Effects

Pattern Density, 

Loading, Die 

Location on Wafer

radial 

distance

spatial averaging filter

Chamber-scale 

variation

Chip-scale

variation

22
Boning (MIT)
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CMP/Plating Variation Modeling

Electroplating/CMP 
Test Wafers Standard test pattern 

(MIT/Sematech 854 Mask)

• Prediction of clearing time, dishing and erosion

• Assess and guide dummy fill insertions

CMP Process
• Fixed slurry, pad: effective Young’s 

modulus, characteristic asperity 

height, removal rate

• Fixed polish process settings: 

pressure, speed, etc.

• Variable polish times

Product Chip Layout

Chip-Level 
Simulation

Model Parameter 
Extraction

Measure Dishing, 
Erosion and Copper 

Thickness

Calibrated Copper 
Pattern Dependent 

Model

Boning (MIT)



Coupled Plating & CMP Simulation: 
MIT/Sematech 854 M1 Mask

24

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

0

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

0

100

200

300

400

500

Pattern density map (%) Line width map (μm)

Each map on 40mm x 40mm grid cells

Boning (MIT)



25

Copper Electroplating and 
CMP Simulation

Simulation result from 

Electroplating model

Simulation result from 

CMP  model
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Initial topography (from plating):

• Large feature step height variation

• Substantial envelope variation
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Pattern Density Compensation –
Dummy Fill Strategies

26

Approach:

 Insert dummy (non-functional) patterns to 
equilibrate layout pattern density

 Important in CMP and etch processes

 Fill: add patterns to “empty” areas

 Cheese: add “holes” in large patterns

KOZ = Keep out zone

Design Approaches:

 Template based: 

 Fill/cheese all areas subject to 
available area, keep out zone, 
and/or blocking mask constraints 

 Usually fills with a fixed pattern 
density (e.g., 25%)

 Algorithmic: 

 Vary pattern (e.g., width, spacing, 
length of dummy) to achieve 
desired or needed pattern densities 
in moving windows

 Model-based generation related to 
models of physical process

W S

𝜌 =
𝑊2

(𝑊 + 𝑆)2



Photonics Process Variation: 
Examples and CAD/DFM Approaches

 Wafer-Scale Variations

 Wafer-scale spatial decomposition and modeling

 Sensitivity analysis, DOE, and RSM

 Worst case/corner analysis of device/circuit impact

 Chip-Scale Variations

 Separation distance correlation models

 Physical or empirical models of layout pattern dependencies

 Dummy fill approaches to minimize layout pattern effects

 Random, Correlated, and Combined Variations

 Statistical models of variation sources

 Monte Carlo and sampling based simulation

 Design centering and robust design

27



Statistical Analysis & Sampling Approaches

28

Monte Carlo or other statistical sampling and analysis methods:

 Alternative to corner analysis

 Requires statistical model of input parameters (pdf, correlation structure, etc.)

 Draw samples based on variation statistics

 Simulate output (samples, pdf, etc.) corresponding to input (samples, pdf, etc.)

 Can accommodate nonlinear as well as linear input-output functions

Input
Space

Output
Space

Gaussian Also Gaussian. 

Corners map to 

corners.

f
linear

Input
Space

Output
Space

Gaussian Non-Gaussian.

Corners do not 

necessarily map to 

extremal points.

f
nonlinear



Photonic Coupler: Correlated and 
non-Gaussian Random Parameters

29T.-W. Weng et al., Optics Express, vol. 23, no. 24, Feb. 2015.

a) Cross section of an SOI-
based directional coupler 
with nominal width W0, 
nominal gap g0, height H0, 
and refractive indices nSi = 
3.48, nSiO2 = 1.445.

c. Stochastic Collocation 
(SC) and Monte Carlo 
(MC) simulations of field 
coupling coefficient d

 BUT correlation structure 
is accounted for:

b) Variations in W and g:

 Resulting output is non-
Gaussian

 SC can be much more 
efficient than MC: 81 
quadrature points (105 sec. 
cpu time) gives similar 
accuracy to 10,000 MC 
points (4800 sec. cpu time).

 Each of W and g modeled 
as Gaussians



Design Centering for Yield Optimization

30

Nominal Design:

 Find design choices 𝒅0 that 
achieve performance goals and 
specification 𝒚𝑠𝑝𝑒𝑐

 A nominal design may meet specs 
(and in many cases, maximize 
nominal performance) but have 
terrible yield over variations 𝒑

𝑦1

𝑦2

𝒚𝑠𝑝𝑒𝑐

𝒚𝑝𝑑𝑓 = 𝑓(𝒅0; 𝒑)

𝑦1

𝑦2

𝒚𝑝𝑑𝑓
∗ = 𝑓(𝒅∗; 𝒑)

Center 
performances y by 
changing design 

parameters d

Design Centering

 Find optimal design choices 𝒅∗ that 
achieve performance goals and 
specification 𝒚𝑠𝑝𝑒𝑐

 But that also maximize yield

 E.g., intersection of performance 
specs and centered performance 
distribution 𝒚𝑝𝑑𝑓

∗



Robust Design: Reduced Wafer-Scale Frequency 
Variation in Adiabatic Microring Resonators

31Z. Su et al., paper Th2A.5, OFC 2014. (MIT/CNSE)

Device Design Goal: Adiabatic geometry for 
high-Q operation, and improved manufacturing 
robustness

(a) Fabricated 300-mm wafer with single reticle marked with red rectangle. Wavelength distribution across 
the wafer for (b) W2 = 400 nm and (c) W2 = 1000 nm. The dots represent the position of the measured 
chips. Insets are the SEMs of the corresponding adiabatic microring resonators. (d) Resonant wavelength 
variations across the wafer for various W2 sizes.  Larger W2 devices are more robust to variation.

 Consider variance sensitivities of 
resonant wavelength 𝜆 with respect to 
thickness T, radius R, and width W:

Τ𝜕𝜆 𝜕𝑇 = 1.367 nm/nm
Τ𝜕𝜆 𝜕𝑅 = 0.291 nm/nm
Τ𝜕𝜆 𝜕𝑊 = 0.894 nm/nm

 Result:
𝜎 𝜆 = 5.38 nm

𝜎𝑊 = 5.520 nm/nm thus W2 dominates



Monte Carlo with Spatial Correlations

32L. Chrostowski et al., Proc. SPIE Vol. 9751, 2016.

a) Balanced Mach-Zehnder
Interferometer Test 
Structure

c. Monte carlo simulations: 
off-state transmissions

 Goal: High extinction 
ratio at designed 
wavelength

b) Simulated spatial 
waveguide linewidth (∆𝑤) 
and thickness (∆h) 
deviations across a wafer

 Result: Extinction ratio of 
the interferometer is no 
longer distinguishable due 
to the spatially dependent 
phase errors



Toward Statistical Photonic Device/Circuit Simulation

 Typical implementation: 

deterministic, with 

external MC or SC 

sampling to generate 

statistical outputs

Device Models

• Components:

– Laser (rate equation)

– Optical connector

– Optical coupler

– Straight waveguide

– Photodetector

Circuit Level

• Differential equation in 

Matlab:

𝑀 𝑥
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑢 𝑡 )

• x: magnitude and phase of 

E-field envelope

• M(x): mass matrix

Modified nodal 

analysis

25

 Alternative: stochastic testing implementation

• Photonic circuit with variations are described by stochastic equation

• Represent the stochastic solution (e.g., magnitude and phase of electrical field) by 

stochastic basis functions

• Compute the weights for basis functions by solving a new deterministic equation

Luca Daniel, Zheng Zhang, Lily Weng (MIT) – work in 

progress under AIM Photonics DFM project
33



Future Outlook (1): 
Stochastic Testing Photonic Simulation

 Examples for stochastic testing (hard-coded implementation)

• Note: this is not a complete or general 

purpose simulator; the examples are 

hard-coded manually

(a) Photonic Fiber Link Circuit (b) Photonic Circular Circuit

 Two Gaussian variables describing variations 

o Ioff (offset current) in the laser

o Length of the fiber waveguide 

 Two Gaussian variables describing variations 

o Length of Fiber1

o Length of Fiber2

Luca Daniel, Zheng Zhang, Lily Weng (MIT) – work in 

progress under AIM Photonics DFM project
34



 Advantages: 

o Requires only one simulation to compute stochastic models (no Monte Carlo!)

o PDF can be easily obtained from computed stochastic models 

 Stochastic testing simulation result for the Fiber Link Circuit

(b) Extracted density 

function 

along the time axis

(a) Mean and s.t.d. of electrical field at

the output waveguide 

Luca Daniel, Zheng Zhang, Lily Weng (MIT) – work in 

progress under AIM Photonics DFM project

Future Outlook (2): 
Stochastic Testing Photonic Simulation

35



Photonics Design-for-Manufacturability

 Understanding Process Variations in Photonic Processes and Devices

 Wafer-level geometry, materials variations

 Chip-scale spatial variations

 Device-level geometry impacts

 Need: Modeling of Spatial/Layout-Dependent Process Variation

 Develop process variability models for silicon photonics fabrication

 Extract models from test structure and fabrication data

 Need: Statistical Compact Models

 Identify sensitive parameters in photonic compact models

 Device/component test structures and statistical characterization

 Generate statistical compact models (from efficient physical models/methods, 
fitting/reduced order, or data) for subset of sensitive photonic components

 Need: DFM Simulation Techniques and Tools

 Statistical photonics simulation for prediction of forward propagation of process and 
component variation to system performance

 Statistical optimization methods for high yield of photonic systems given variation 
models

36



Key Challenges in Photonic DFM Framework

Device level 

Circuit level

System level

Variation-Aware Photonic 
Circuit Simulators

Variation-Aware Photonic
Device Solvers

Optical parameters

Power spectrum/bandwidth

Yield, Energy consumption

ex: waveguide 
sidewall variation

Test Circuits

Device level 

Measurement data

3. Inverse problem:
Infer photonic device and 
variation parameters based 
on measured test data 

3

2

2. Forward Uncertainty Propagation
4. Stochastic 
Optimization:
Achieve high 
yield in the face 
of variation

4

1
1. Photonic Models: 
• Detailed physical models
• Compact models (physical,

fitting, or reduced order)
• Statistical parameters

1

Physics based or  Fitting & Model Reduction
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