
TECHNICAL BRIEF

EDA tools have been evolving since the mid-1980s. The 
development can be broken down into three major phases, 
and it’s important to understand these three phases to 
realize where EDA tools are now, where the tools are much 
more tightly integrated, and where they are starting to 
employ machine learning techniques to deal with the 
massive level of complexity. 

This evolution has resulted in three key innovations of 
modern (late-stage Phase Three) computational software, 
including integration of previously independent design 
tools, partitioning to multiple CPUs and servers, and using 
machine learning to improve productivity. 

Phase One
In the beginning, companies were started to develop, 
maintain, and evolve state-of-the-art algorithms: the best 
routing algorithm, the best timing algorithms, the best 
synthesis algorithms, etc. Often companies were created 
to develop one specific tool with experts in that domain. 
Semiconductor companies had large CAD groups with 
hundreds of people who would take these tools and 
develop flows around them with scripting languages so 
they could actually create a chip.

This era was known as “best-in-class point tools.” A 
second part of Phase One was when companies like 
Cadence acquired some of these companies to create a 
broader product line. For example, Cadence acquired 
Tangent for gate-array and cell-based place and route 
(P&R), Gateway for Verilog simulation, and Valid for printed 
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circuit board (PCB) design. Cadence had already 
developed (going back to SDA and ECAD days) the 
Virtuoso® environment for custom and analog layout and 
Dracula for DRS. 

At the end of Phase One, the EDA industry consisted of a 
number of companies like Cadence with fairly broad 
product lines (including some major holes), plus a lot of 
single-product startups.

Phase Two
Phase Two started when the EDA companies recognized 
that state-of-the-art algorithms had to start working 
better together. For example, timing-driven P&R requires a 
timing engine to be part of the tool. The semiconductor 
CAD groups were challenged when the timing engine in 
the P&R tool was different from the timing engine in the 
simulator or, once it came along, static timing analyzer. 
The tools were not integrated, and it was unsatisfactory if 
the P&R tool made the engineers think they had met 
timing, but the timing analysis tool did not. With many 
tools, particularly synthesis, engineers had to overcon-
strain the problem as if they were negotiating with the 
tool. Engineers would ask for 600MHz and hope to 
get 500MHz.

The solution was to have common engines for common 
functions so there would only be one answer to any given 
question. This was a massive undertaking, akin to 
changing the oil in a car without stopping. Changing the 
timing engine in a synthesis tool without breaking it is not 
a simple undertaking. 



Computational Software:  A New Paradigm for EDA Tools

Cadence is a pivotal leader in electronic design and computational expertise, using its Intelligent 
System Design strategy to turn design concepts into reality. Cadence customers are the world’s most 
creative and innovative companies, delivering extraordinary electronic products from chips to boards 
to systems for the most dynamic market applications. http://www.cadence.com.

© 2020 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and the other Cadence marks 
found at www.cadence.com/go/trademarks are trademarks or registered trademarks of Cadence Design Systems, Inc. All other 
trademarks are the property of their respective owners.       15331  11/20  SA/LL/PDF

By the end of Phase Two, most EDA tools had shared 
placement, timing, extraction, design-rule checking, and 
other engines.

Phase Three
We entered Phase Three when processor speeds capped 
out and processor companies delivered increasing power 
through multi-core. Some EDA algorithms could take 
advantage of this fairly easily (many DRC rules can be 
checked independently, for example). But many struggled, 
notably simulation with a global concept of time and 
causality. Large semiconductor and system companies put 
in place server farms with tens of thousands and then 
hundreds of thousands of processors. EDA tools had been 
created in an era where the main way to get more compute 
power was to wait for a faster processor. Now, with big data 
centers and multi-core processors, there were vast 
amounts of compute power available but in a way that the 
design tools could not utilize. Phase Three would emphasize 
the repartitioning of these tools to leverage modern 
computing fabrics.

Traditionally, the EDA process was split into different steps: 
synthesis, placement, routing, extraction, timing, and 
signoff. With the common engines developed in Phase Two, 
these worked better than when all the engines were 
different in Phase One. But the new, better way is to 
partition the design, as much as possible, so all the phases 
interface tightly on common data structures but don’t 
handle the whole design. When that works, a big design can 
be scaled to many cores/servers. Some algorithms still are 
really hard to parallelize, such as placement (which is inher-
ently global, at least at the start of the process). But other 
algorithms are much more straightforward. For example, 
detailed routing on one part of a chip doesn’t really interact 
with routing on another part of the chip once the global 
router has divided up the task.

Even interactive programs benefit from this tighter 
integration, being able to open an editing window on a chip 
from inside the package editor, or vice versa, without 
having to explicitly read and write files and switch tools.

Another part of Phase Three has been the addition of deep 
learning approaches to guide the algorithm selection under 
the hood. A lot of what engineers do when running EDA 
tools, towards the end of the design, is look at the results 
from one run, tweak a few parameters, and then do another 

run. Deep learning allows the tool to tweak the parameters 
itself in an intelligent way. In this case, intelligent means 
learning from other similar designs with the same design 
style at the same company. It also includes learning from 
earlier runs of the tools on the same design.

Computational Software
That brings us to the three key innovations of modern 
(late-stage Phase Three) computational software:

ff The integration and co-mingling of previously 
independent design, analysis, and implementation to 
achieve optimal results, which delivers optimized SoC/
systems that are achieved more automatically with a 
more predictable path to closure.

ff The partitioning and scaling of computation to thousands 
of CPU cores and servers, which deliver orders-of-mag-
nitude faster computation for exploring more alternatives 
for more optimal results and leveraging more abundant 
compute cycles.

ff The introduction of machine learning to improve and 
harness design heuristics for system optimization, which 
ups the level of abstraction for human user experience 
and control, automates previously burdensome routine 
tasks, and finds more optimal results in a sea of too many 
alternatives for humans to consider completely.

Summary
Throughout the evolution from point tools geared to solve 
one specific problem in the mid-1980s to today’s very 
integrated design tool flows, there’s been a lot of innovation. 
Designers have benefited, and will continue to benefit, from 
tighter integration between various tools to more quickly 
get the results they need for complex SoC designs. As these 
designs have become bigger and bigger, the tools have 
been redesigned to take maximum advantage of multiple 
CPUs and servers. Finally, now machine learning is helping 
find more optimal design results.

Cadence was at the forefront of these trends and continues 
to push the envelope to develop better and faster tools for 
its customers. The next ten years should be even 
more exciting!


