
TECHNICAL BRIEF

EDA tools have been evolving since the mid-1980s. The
development can be broken down into three major phases,
and it’s important to understand these three phases to
realize where EDA tools are now, where the tools are much
more tightly integrated, and where they are starting to
employ machine learning techniques to deal with the
massive level of complexity.

This evolution has resulted in three key innovations of
modern (late-stage Phase Three) computational software,
including integration of previously independent design
tools, partitioning to multiple CPUs and servers, and using
machine learning to improve productivity.

Phase One
In the beginning, companies were started to develop,
maintain, and evolve state-of-the-art algorithms: the best
routing algorithm, the best timing algorithms, the best
synthesis algorithms, etc. Often companies were created
to develop one specific tool with experts in that domain.
Semiconductor companies had large CAD groups with
hundreds of people who would take these tools and
develop flows around them with scripting languages so
they could actually create a chip.

This era was known as “best-in-class point tools.” A
second part of Phase One was when companies like
Cadence acquired some of these companies to create a
broader product line. For example, Cadence acquired
Tangent for gate-array and cell-based place and route
(P&R), Gateway for Verilog simulation, and Valid for printed

Computational Software:
A New Paradigm for EDA Tools

circuit board (PCB) design. Cadence had already
developed (going back to SDA and ECAD days) the
Virtuoso® environment for custom and analog layout and
Dracula for DRS.

At the end of Phase One, the EDA industry consisted of a
number of companies like Cadence with fairly broad
product lines (including some major holes), plus a lot of
single-product startups.

Phase Two
Phase Two started when the EDA companies recognized
that state-of-the-art algorithms had to start working
better together. For example, timing-driven P&R requires a
timing engine to be part of the tool. The semiconductor
CAD groups were challenged when the timing engine in
the P&R tool was different from the timing engine in the
simulator or, once it came along, static timing analyzer.
The tools were not integrated, and it was unsatisfactory if
the P&R tool made the engineers think they had met
timing, but the timing analysis tool did not. With many
tools, particularly synthesis, engineers had to overcon-
strain the problem as if they were negotiating with the
tool. Engineers would ask for 600MHz and hope to
get 500MHz.

The solution was to have common engines for common
functions so there would only be one answer to any given
question. This was a massive undertaking, akin to
changing the oil in a car without stopping. Changing the
timing engine in a synthesis tool without breaking it is not
a simple undertaking.

Computational Software: A New Paradigm for EDA Tools

Cadence is a pivotal leader in electronic design and computational expertise, using its Intelligent
System Design strategy to turn design concepts into reality. Cadence customers are the world’s most
creative and innovative companies, delivering extraordinary electronic products from chips to boards
to systems for the most dynamic market applications. http://www.cadence.com.

© 2020 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and the other Cadence marks
found at www.cadence.com/go/trademarks are trademarks or registered trademarks of Cadence Design Systems, Inc. All other
trademarks are the property of their respective owners. 15331 11/20 SA/LL/PDF

By the end of Phase Two, most EDA tools had shared
placement, timing, extraction, design-rule checking, and
other engines.

Phase Three
We entered Phase Three when processor speeds capped
out and processor companies delivered increasing power
through multi-core. Some EDA algorithms could take
advantage of this fairly easily (many DRC rules can be
checked independently, for example). But many struggled,
notably simulation with a global concept of time and
causality. Large semiconductor and system companies put
in place server farms with tens of thousands and then
hundreds of thousands of processors. EDA tools had been
created in an era where the main way to get more compute
power was to wait for a faster processor. Now, with big data
centers and multi-core processors, there were vast
amounts of compute power available but in a way that the
design tools could not utilize. Phase Three would emphasize
the repartitioning of these tools to leverage modern
computing fabrics.

Traditionally, the EDA process was split into different steps:
synthesis, placement, routing, extraction, timing, and
signoff. With the common engines developed in Phase Two,
these worked better than when all the engines were
different in Phase One. But the new, better way is to
partition the design, as much as possible, so all the phases
interface tightly on common data structures but don’t
handle the whole design. When that works, a big design can
be scaled to many cores/servers. Some algorithms still are
really hard to parallelize, such as placement (which is inher-
ently global, at least at the start of the process). But other
algorithms are much more straightforward. For example,
detailed routing on one part of a chip doesn’t really interact
with routing on another part of the chip once the global
router has divided up the task.

Even interactive programs benefit from this tighter
integration, being able to open an editing window on a chip
from inside the package editor, or vice versa, without
having to explicitly read and write files and switch tools.

Another part of Phase Three has been the addition of deep
learning approaches to guide the algorithm selection under
the hood. A lot of what engineers do when running EDA
tools, towards the end of the design, is look at the results
from one run, tweak a few parameters, and then do another

run. Deep learning allows the tool to tweak the parameters
itself in an intelligent way. In this case, intelligent means
learning from other similar designs with the same design
style at the same company. It also includes learning from
earlier runs of the tools on the same design.

Computational Software
That brings us to the three key innovations of modern
(late-stage Phase Three) computational software:

ff The integration and co-mingling of previously
independent design, analysis, and implementation to
achieve optimal results, which delivers optimized SoC/
systems that are achieved more automatically with a
more predictable path to closure.

ff The partitioning and scaling of computation to thousands
of CPU cores and servers, which deliver orders-of-mag-
nitude faster computation for exploring more alternatives
for more optimal results and leveraging more abundant
compute cycles.

ff The introduction of machine learning to improve and
harness design heuristics for system optimization, which
ups the level of abstraction for human user experience
and control, automates previously burdensome routine
tasks, and finds more optimal results in a sea of too many
alternatives for humans to consider completely.

Summary
Throughout the evolution from point tools geared to solve
one specific problem in the mid-1980s to today’s very
integrated design tool flows, there’s been a lot of innovation.
Designers have benefited, and will continue to benefit, from
tighter integration between various tools to more quickly
get the results they need for complex SoC designs. As these
designs have become bigger and bigger, the tools have
been redesigned to take maximum advantage of multiple
CPUs and servers. Finally, now machine learning is helping
find more optimal design results.

Cadence was at the forefront of these trends and continues
to push the envelope to develop better and faster tools for
its customers. The next ten years should be even
more exciting!

